Source code for spynnaker.pyNN.models.common.param_generator_data
# Copyright (c) 2022 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Union, cast
import numpy
from numpy import uint32, int32
from numpy.typing import NDArray
from typing_extensions import TypeAlias
from pyNN.random import RandomDistribution, available_distributions
from spinn_front_end_common.interface.ds import DataType
from spinn_front_end_common.utilities.constants import BYTES_PER_WORD
#: The generator param type for each data type
_GENERATOR_TYPES = {
DataType.S1615: 0,
DataType.UINT32: 1,
DataType.INT32: 2,
DataType.U032: 3
}
[docs]
def get_generator_type(data_type: DataType) -> int:
"""
:param ~data_specification.enums.DataType data_type:
:return: The generator parameter type code for the given data type.
:rtype: int
:raises TypeError: If an unsupported data type is given
"""
if data_type in _GENERATOR_TYPES:
return _GENERATOR_TYPES[data_type]
raise TypeError(f"Ungeneratable type {data_type}")
[docs]
def type_has_generator(data_type: DataType) -> bool:
"""
:param ~data_specification.enums.DataType data_type:
:return:
Whether there is a generator parameter type code for the given data
type.
:rtype: bool
"""
return data_type in _GENERATOR_TYPES
#: ID of the constant parameter generator.
PARAM_TYPE_CONSTANT_ID = 0
#: IDs of the random parameter generators supported by the synapse expander.
PARAM_TYPE_BY_NAME = {
"uniform": 1,
"uniform_int": 1,
"normal": 2,
"normal_clipped": 3,
"normal_clipped_to_boundary": 4,
"exponential": 5,
"exponential_clipped": 6
}
_ParamType: TypeAlias = Union[int, float, RandomDistribution]
[docs]
def param_generator_id(value: _ParamType) -> int:
"""
:param value: The value to examine the type of.
:return: The ID of the on-chip generator that handles the value.
:rtype: int
:raises TypeError: If an value of an unsupported data type is given
"""
# Scalars are fine on the machine
if numpy.isscalar(value):
return PARAM_TYPE_CONSTANT_ID
# Only certain types of random distributions are supported for
# generation on the machine
if isinstance(value, RandomDistribution):
if value.name in PARAM_TYPE_BY_NAME:
return PARAM_TYPE_BY_NAME[value.name]
raise TypeError(f"Ungeneratable parameter {value}")
[docs]
def is_param_generatable(value: Any) -> bool:
"""
:param value: The value to examine the type of.
:return: Whether the value is of a type that can be generated on chip.
:rtype: bool
"""
if isinstance(value, str):
return False
if numpy.isscalar(value):
return True
return (isinstance(value, RandomDistribution) and
value.name in PARAM_TYPE_BY_NAME)
[docs]
def param_generator_params(values: _ParamType) -> NDArray[uint32]:
"""
Get the parameter generator parameters as a numpy array.
:param values:
:type values: float or ~pyNN.random.RandomDistribution
:rtype: ~numpy.ndarray
"""
if numpy.isscalar(values):
return numpy.array(
[DataType.S1615.encode_as_int(cast(float, values))],
dtype=int32).view(uint32)
if isinstance(values, RandomDistribution):
parameters = (
values.parameters.get(param_name, None)
for param_name in available_distributions[values.name])
parameters = (
DataType.S1615.max if param == numpy.inf
else DataType.S1615.min if param == -numpy.inf else param
for param in parameters if param is not None)
params = [
DataType.S1615.encode_as_int(param) for param in parameters]
return numpy.array(params, dtype=int32).view(uint32)
raise ValueError(f"Unexpected value {values}")
#: At most, there are 4 words as param generator parameters
MAX_PARAMS_BYTES = 4 * BYTES_PER_WORD
[docs]
def param_generator_params_size_in_bytes(values: _ParamType) -> int:
"""
Get the size of the parameter generator parameters in bytes.
:param values:
:type values: int or ~pyNN.random.RandomDistribution
:rtype: int
:raises TypeError: If `values` is of an unsupported data type
"""
if numpy.isscalar(values):
return BYTES_PER_WORD
if isinstance(values, RandomDistribution):
parameters = available_distributions[values.name]
return len(parameters) * BYTES_PER_WORD
raise ValueError(f"Unexpected value {values}")