Source code for spynnaker.pyNN.models.common.parameter_holder

# Copyright (c) 2017 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import (
    Any, Callable, cast, Dict, Iterable, Iterator, List, Optional, overload,
    Tuple, Union)
from pyNN.random import RandomDistribution
from spinn_utilities.helpful_functions import is_singleton
from spinn_utilities.ranged.abstract_sized import Selector


class ParameterHolder(object):
    """
    Holds a set of parameters and state variables to be returned in a
    PyNN-specific format.
    """

    __slots__ = (
        # A list of items of data that are to be present in each element
        "__data_items_to_return",

        "__single_key",

        # Function call to get the values
        "__get_call",

        # The merged parameters formed just before the data is read
        "__data_items",

        # A selector to use if requested
        "__selector")

    def __init__(
            self, data_items_to_return: Union[str, Iterable[str]],
            get_call: Callable[[str, Selector], Union[
                List[float], RandomDistribution]],
            selector: Selector = None):
        """
        :param data_items_to_return: A list of data fields to be returned
        :type data_items_to_return: list(str) or tuple(str)
        :param get_call: A function to call to read a value
        :type get_call: callable(str, selector)->list
        :param selector: a description of the subrange to accept,
            or `None` for all. See:
            :py:meth:`~spinn_utilities.ranged.AbstractSized.selector_to_ids`
        :type selector: None or slice or int or list(bool) or list(int)
        """
        self.__data_items_to_return: Union[str, Tuple[str, ...]]
        if isinstance(data_items_to_return, str):
            self.__data_items_to_return = data_items_to_return
            self.__single_key: Optional[str] = data_items_to_return
        else:
            self.__data_items_to_return = tuple(data_items_to_return)
            self.__single_key = None
        self.__get_call = get_call
        self.__data_items: Optional[Dict[str, List[float]]] = None
        self.__selector = selector

    def _safe_read_values(self, parameter: str) -> Union[List[float], float]:
        values = self.__get_call(parameter, self.__selector)

        # The values must be a single item, a list or a random distribution;
        # if a random distribution we must not have generated yet!
        if isinstance(values, RandomDistribution):
            raise ValueError(
                "Although it is possible to request the values"
                " before the simulation has run, it is not possible to read"
                " those values until after the simulation has run.  Please run"
                f" the simulation before reading {parameter}.")

        if self.__selector is not None and is_singleton(self.__selector):
            return values[0]
        return values

    def _get_data_items(self) -> Dict[str, List[float]]:
        """
        Merges the parameters and values in to the final data items

        :rtype: dict
        """
        # If there are already merged connections cached, return those
        if self.__data_items is not None:
            return self.__data_items

        # If there is just one item to return, return the values stored
        if is_singleton(self.__data_items_to_return):
            key = cast(str, self.__data_items_to_return)
            self.__data_items = {
                key: cast(List[float], self._safe_read_values(key))}
            return self.__data_items

        # If there are multiple items to return, form a list
        self.__data_items = {
            param: cast(List[float], self._safe_read_values(param))
            for param in self.__data_items_to_return}

        return self.__data_items

    @overload
    def __getitem__(self, s: int) -> float:
        ...

    @overload
    def __getitem__(self, s: str) -> List[float]:
        ...

    def __getitem__(self, s: Union[int, str]) -> Union[float, List[float]]:
        data = self._get_data_items()
        if self.__single_key is not None:
            if not isinstance(s, int):
                raise KeyError("As there is only one array held "
                               "only int parameter are valid")
            return data[self.__single_key][s]
        if not isinstance(s, str):
            raise KeyError("As multiple arrays held "
                           "only str parameter are valid")
        return data[s]

    def __len__(self) -> int:
        data = self._get_data_items()
        if self.__single_key is not None:
            return len(data[self.__single_key])
        return len(data)

    def __iter__(self) -> Iterator:
        data = self._get_data_items()
        if self.__single_key is not None:
            return iter(data[self.__single_key])
        return iter(data)

    def __str__(self) -> str:
        data = self._get_data_items()
        if self.__single_key is not None:
            return str(data[self.__single_key])
        return str(data)

    def __repr__(self) -> str:
        data = self._get_data_items()
        if self.__single_key is not None:
            return repr(data[self.__single_key])
        return repr(data)

    def __contains__(self, item: Union[str, int]) -> bool:
        data = self._get_data_items()
        if self.__single_key is not None:
            return item in data[self.__single_key]
        return item in data

    def __eq__(self, other: Any) -> bool:
        data = self._get_data_items()
        if self.__single_key is not None:
            return data[self.__single_key] == other
        return data == other

    def __hash__(self) -> int:
        data = self._get_data_items()
        if self.__single_key is not None:
            return hash(data[self.__single_key])
        return hash(data)

[docs] def keys(self) -> Iterable[str]: """ The names of the data :rtype: iter(str) """ data = self._get_data_items() return data.keys()
[docs] def values(self) -> Iterable[List[float]]: """ The names and values of the data :rtype: iter(list(float)) """ data = self._get_data_items() return data.values()
[docs] def items(self) -> Iterable[Tuple[str, List[float]]]: """ The names and values of the data :rtype: iter(tuple(str, list(float))) """ data = self._get_data_items() return data.items()