Source code for spynnaker.pyNN.models.neural_projections.connectors.abstract_generate_connector_on_host

# Copyright (c) 2021 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Sequence, Tuple, TYPE_CHECKING
from numpy.typing import NDArray
from spinn_utilities.abstract_base import AbstractBase, abstractmethod
from pacman.model.graphs.common import Slice
if TYPE_CHECKING:
    from spynnaker.pyNN.models.neural_projections import SynapseInformation


class AbstractGenerateConnectorOnHost(object, metaclass=AbstractBase):
    """
    A connector that can be generated on host.
    """

    # Mix-in class, so don't add anything here!
    __slots__: Tuple[str, ...] = ()

[docs] @abstractmethod def create_synaptic_block( self, post_slices: Sequence[Slice], post_vertex_slice: Slice, synapse_type: int, synapse_info: SynapseInformation) -> NDArray: """ Create a synaptic block from the data. :param list(~pacman.model.graphs.common.Slice) post_slices: :param ~pacman.model.graphs.common.Slice post_vertex_slice: :param AbstractSynapseType synapse_type: :param SynapseInformation synapse_info: :returns: The synaptic matrix data to go to the machine, as a Numpy array :rtype: ~numpy.ndarray """ raise NotImplementedError