Source code for spynnaker.pyNN.models.neural_projections.connectors.abstract_generate_connector_on_machine
# Copyright (c) 2017 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from abc import abstractmethod
from enum import Enum
from typing import TYPE_CHECKING
import numpy
from numpy import uint32
from numpy.typing import NDArray
from pyNN.random import RandomDistribution
from spinn_utilities.abstract_base import AbstractBase
from spinn_utilities.overrides import overrides
from spynnaker.pyNN.models.neural_projections.connectors import (
AbstractConnector)
from spynnaker.pyNN.exceptions import SynapticConfigurationException
from spynnaker.pyNN.models.common.param_generator_data import (
param_generator_params, param_generator_params_size_in_bytes,
param_generator_id, is_param_generatable)
from spynnaker.pyNN.types import (Delay_Types, Weight_Types)
from spynnaker.pyNN.utilities.utility_calls import check_rng
from .abstract_generate_connector_on_host import (
AbstractGenerateConnectorOnHost)
if TYPE_CHECKING:
from spynnaker.pyNN.models.neural_projections import (
ProjectionApplicationEdge, SynapseInformation)
class ConnectorIDs(Enum):
"""
Hashes of the connection generators supported by the synapse expander
"""
ONE_TO_ONE_CONNECTOR = 0
ALL_TO_ALL_CONNECTOR = 1
FIXED_PROBABILITY_CONNECTOR = 2
FIXED_TOTAL_NUMBER_CONNECTOR = 3
FIXED_NUMBER_PRE_CONNECTOR = 4
FIXED_NUMBER_POST_CONNECTOR = 5
KERNEL_CONNECTOR = 6
ALL_BUT_ME_CONNECTOR = 7
ONE_TO_ONE_OFFSET_CONNECTOR = 8
class AbstractGenerateConnectorOnMachine(
AbstractConnector, metaclass=AbstractBase):
"""
Indicates that the connectivity can be generated on the machine.
"""
__slots__ = ()
[docs]
@overrides(AbstractConnector.validate_connection)
def validate_connection(
self, application_edge: ProjectionApplicationEdge,
synapse_info: SynapseInformation):
# If we can't generate on machine, we must be able to generate on host
if not self.generate_on_machine(synapse_info):
if not isinstance(self, AbstractGenerateConnectorOnHost):
raise SynapticConfigurationException(
"The parameters of this connection do not allow it to be"
" generated on the machine, but the connector cannot"
" be generated on host!")
[docs]
def generate_on_machine(self, synapse_info: SynapseInformation) -> bool:
"""
Determine if this instance can generate on the machine.
Default implementation returns True if the weights and delays can
be generated on the machine
:param SynapseInformation synapse_info: The synapse information
:rtype: bool
"""
if (not is_param_generatable(synapse_info.weights) or
not is_param_generatable(synapse_info.delays)):
return False
if isinstance(synapse_info.weights, RandomDistribution):
check_rng(synapse_info.weights.rng, "RandomDistribution in weight")
if isinstance(synapse_info.delays, RandomDistribution):
check_rng(synapse_info.delays.rng, "RandomDistribution in delay")
return True
[docs]
def gen_weights_id(self, weights: Weight_Types) -> int:
"""
Get the id of the weight generator on the machine.
:param weights:
:type weights: ~pyNN.random.RandomDistribution or int or float
:rtype: int
"""
return param_generator_id(weights)
[docs]
def gen_weights_params(self, weights: Weight_Types) -> NDArray[uint32]:
"""
Get the parameters of the weight generator on the machine.
:param weights:
:type weights: ~pyNN.random.RandomDistribution or int or float
:rtype: ~numpy.ndarray(~numpy.uint32)
"""
return param_generator_params(weights)
[docs]
def gen_weight_params_size_in_bytes(self, weights) -> int:
"""
The size of the weight parameters in bytes.
:param weights:
:type weights: ~pyNN.random.RandomDistribution or int or float
:rtype: int
"""
return param_generator_params_size_in_bytes(weights)
[docs]
def gen_delays_id(self, delays: Delay_Types) -> int:
"""
Get the id of the delay generator on the machine.
:param delays:
:type delays: ~pyNN.random.RandomDistribution or int or float
:rtype: int
"""
return param_generator_id(delays)
[docs]
def gen_delay_params(self, delays: Delay_Types) -> NDArray[uint32]:
"""
Get the parameters of the delay generator on the machine.
:param delays:
:type delays: ~pyNN.random.RandomDistribution or int or float
:rtype: ~numpy.ndarray(~numpy.uint32)
"""
return param_generator_params(delays)
[docs]
def gen_delay_params_size_in_bytes(self, delays: Delay_Types) -> int:
"""
The size of the delay parameters in bytes.
:param delays:
:type delays: ~pyNN.random.RandomDistribution or int or float
:rtype: int
"""
return param_generator_params_size_in_bytes(delays)
@property
@abstractmethod
def gen_connector_id(self) -> int:
"""
The ID of the connection generator on the machine.
:rtype: int
"""
raise NotImplementedError
[docs]
def gen_connector_params(
self, synapse_info: SynapseInformation) -> NDArray[uint32]:
"""
Get the parameters of the on machine generation.
:param SynapseInformation synapse_info: The synaptic information
:rtype: ~numpy.ndarray(uint32)
"""
# pylint: disable=unused-argument
return numpy.zeros(0, dtype="uint32")
@property
def gen_connector_params_size_in_bytes(self) -> int:
"""
The size of the connector parameters, in bytes.
:rtype: int
"""
return 0