Source code for spynnaker.pyNN.models.neural_projections.connectors.all_to_all_connector

# Copyright (c) 2014 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Sequence, Optional, TYPE_CHECKING

import numpy
from numpy import uint32
from numpy.typing import NDArray

from spinn_utilities.overrides import overrides

from pacman.model.graphs.common import Slice

from spinn_front_end_common.utilities.constants import BYTES_PER_WORD

from .abstract_connector import AbstractConnector
from .abstract_generate_connector_on_machine import (
    AbstractGenerateConnectorOnMachine, ConnectorIDs)
from .abstract_generate_connector_on_host import (
    AbstractGenerateConnectorOnHost)

if TYPE_CHECKING:
    from spynnaker.pyNN.models.neural_projections import SynapseInformation


class AllToAllConnector(AbstractGenerateConnectorOnMachine,
                        AbstractGenerateConnectorOnHost):
    """
    Connects all cells in the presynaptic population to all cells in
    the postsynaptic population.
    """

    __slots__ = ("__allow_self_connections", )

    def __init__(self, allow_self_connections=True, safe=True,
                 verbose=None, callback=None):
        """
        :param bool allow_self_connections:
            if the connector is used to connect a Population to itself, this
            flag determines whether a neuron is allowed to connect to itself,
            or only to other neurons in the Population.
        :param bool safe:
            If ``True``, check that weights and delays have valid values.
            If ``False``, this check is skipped.
        :param bool verbose:
            Whether to output extra information about the connectivity to a
            CSV file
        :param callable callback:
            if given, a callable that display a progress bar on the terminal.

            .. note::
                Not supported by sPyNNaker.
        """
        super().__init__(safe, callback, verbose)
        self.__allow_self_connections = allow_self_connections

[docs] @overrides(AbstractConnector.get_delay_maximum) def get_delay_maximum(self, synapse_info: SynapseInformation) -> float: return self._get_delay_maximum( synapse_info.delays, synapse_info.n_pre_neurons * synapse_info.n_post_neurons, synapse_info)
[docs] @overrides(AbstractConnector.get_delay_minimum) def get_delay_minimum(self, synapse_info: SynapseInformation) -> float: return self._get_delay_minimum( synapse_info.delays, synapse_info.n_pre_neurons * synapse_info.n_post_neurons, synapse_info)
[docs] @overrides(AbstractConnector.get_n_connections_from_pre_vertex_maximum) def get_n_connections_from_pre_vertex_maximum( self, n_post_atoms: int, synapse_info: SynapseInformation, min_delay: Optional[float] = None, max_delay: Optional[float] = None) -> int: if min_delay is None or max_delay is None: return n_post_atoms return self._get_n_connections_from_pre_vertex_with_delay_maximum( synapse_info.delays, synapse_info.n_pre_neurons * synapse_info.n_post_neurons, n_post_atoms, min_delay, max_delay, synapse_info)
[docs] @overrides(AbstractConnector.get_n_connections_to_post_vertex_maximum) def get_n_connections_to_post_vertex_maximum( self, synapse_info: SynapseInformation) -> int: return synapse_info.n_pre_neurons
[docs] @overrides(AbstractConnector.get_weight_maximum) def get_weight_maximum(self, synapse_info: SynapseInformation) -> float: n_conns = synapse_info.n_pre_neurons * synapse_info.n_post_neurons return self._get_weight_maximum( synapse_info.weights, n_conns, synapse_info)
[docs] @overrides(AbstractGenerateConnectorOnHost.create_synaptic_block) def create_synaptic_block( self, post_slices: Sequence[Slice], post_vertex_slice: Slice, synapse_type: int, synapse_info: SynapseInformation) -> NDArray: n_connections = synapse_info.n_pre_neurons * post_vertex_slice.n_atoms no_self = ( not self.__allow_self_connections and synapse_info.pre_population == synapse_info.post_population) if no_self: n_connections -= post_vertex_slice.n_atoms block = numpy.zeros( n_connections, dtype=AbstractConnector.NUMPY_SYNAPSES_DTYPE) if no_self: n_atoms = synapse_info.n_pre_neurons sources = numpy.where(numpy.diag( numpy.repeat(1, n_atoms)) == 0)[0] targets = numpy.array([sources[ ((n_atoms * i) + (n_atoms - 1)) - j] for j in range(n_atoms) for i in range(n_atoms - 1)]) else: sources = numpy.repeat(numpy.arange( 0, synapse_info.n_pre_neurons), post_vertex_slice.n_atoms) targets = numpy.tile( numpy.arange(0, post_vertex_slice.n_atoms), synapse_info.n_pre_neurons) # pylint: disable=protected-access block["source"] = sources block["target"] = targets block["weight"] = self._generate_weights( block["source"], block["target"], n_connections, post_vertex_slice, synapse_info) block["delay"] = self._generate_delays( block["source"], block["target"], n_connections, post_vertex_slice, synapse_info) block["synapse_type"] = synapse_type return block
def __repr__(self): return "AllToAllConnector()" @property def allow_self_connections(self) -> bool: """ :rtype: bool """ return self.__allow_self_connections @allow_self_connections.setter def allow_self_connections(self, new_value: bool): self.__allow_self_connections = new_value @property @overrides(AbstractGenerateConnectorOnMachine.gen_connector_id) def gen_connector_id(self) -> int: return ConnectorIDs.ALL_TO_ALL_CONNECTOR.value
[docs] @overrides(AbstractGenerateConnectorOnMachine.gen_connector_params) def gen_connector_params( self, synapse_info: SynapseInformation) -> NDArray[uint32]: allow_self = ( self.__allow_self_connections or synapse_info.pre_population != synapse_info.post_population) return numpy.array([int(allow_self)], dtype=uint32)
@property @overrides( AbstractGenerateConnectorOnMachine.gen_connector_params_size_in_bytes) def gen_connector_params_size_in_bytes(self) -> int: return BYTES_PER_WORD