Source code for spynnaker.pyNN.models.neuron.generator_data
# Copyright (c) 2017 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Optional, Sequence, cast, TYPE_CHECKING
import numpy
from numpy import uint32
from numpy.typing import NDArray
from spinn_front_end_common.utilities.constants import BYTES_PER_WORD
from spynnaker.pyNN.models.neural_projections.connectors import (
AbstractGenerateConnectorOnMachine)
if TYPE_CHECKING:
from spynnaker.pyNN.models.neural_projections import (
ProjectionApplicationEdge, SynapseInformation)
from spynnaker.pyNN.models.neuron.synapse_io import MaxRowInfo
# Address to indicate that the synaptic region is unused
SYN_REGION_UNUSED = 0xFFFFFFFF
[docs]
class GeneratorData(object):
"""
Data for each connection of the synapse generator.
"""
__slots__ = ("__data", )
BASE_SIZE = 11 * BYTES_PER_WORD
def __init__(
self, synaptic_matrix_offset: Optional[int],
delayed_synaptic_matrix_offset: Optional[int],
app_edge: ProjectionApplicationEdge,
synapse_information: SynapseInformation, max_row_info: MaxRowInfo,
max_pre_atoms_per_core: int, max_post_atoms_per_core: int):
# Offsets are used in words in the generator, but only
# if the values are valid
if synaptic_matrix_offset is not None:
synaptic_matrix_offset //= BYTES_PER_WORD
else:
synaptic_matrix_offset = SYN_REGION_UNUSED
if delayed_synaptic_matrix_offset is not None:
delayed_synaptic_matrix_offset //= BYTES_PER_WORD
else:
delayed_synaptic_matrix_offset = SYN_REGION_UNUSED
# Take care of Population views
# pylint: disable=protected-access
pre_lo, pre_hi = synapse_information.pre_population._view_range
post_lo, post_hi = synapse_information.post_population._view_range
# Get objects needed for the next bit
connector = cast(AbstractGenerateConnectorOnMachine,
synapse_information.connector)
synapse_dynamics = synapse_information.synapse_dynamics
# Create the data needed
self.__data = list()
self.__data.append(numpy.array([
pre_lo, pre_hi, post_lo, post_hi,
synapse_information.synapse_type,
synapse_dynamics.gen_matrix_id,
connector.gen_connector_id,
connector.gen_weights_id(synapse_information.weights),
connector.gen_delays_id(synapse_information.delays)
], dtype=numpy.uint32))
self.__data.append(synapse_dynamics.gen_matrix_params(
synaptic_matrix_offset, delayed_synaptic_matrix_offset, app_edge,
synapse_information, max_row_info, max_pre_atoms_per_core,
max_post_atoms_per_core))
self.__data.append(connector.gen_connector_params(synapse_information))
self.__data.append(connector.gen_weights_params(
synapse_information.weights))
self.__data.append(connector.gen_delay_params(
synapse_information.delays))
@property
def size(self) -> int:
"""
The size of the generated data, in bytes.
:rtype: int
"""
return sum(len(i) for i in self.__data) * BYTES_PER_WORD
@property
def gen_data(self) -> Sequence[NDArray[uint32]]:
"""
The data to be written for this connection.
:rtype: list(~numpy.ndarray(~numpy.uint32))
"""
return self.__data