Source code for spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.timing_dependence_vogels_2011
# Copyright (c) 2017 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterable
from numpy import floating
from numpy.typing import NDArray
from spinn_utilities.overrides import overrides
from spinn_front_end_common.interface.ds import (
DataSpecificationBase, DataType)
from spinn_front_end_common.utilities.constants import (
BYTES_PER_WORD, BYTES_PER_SHORT)
from spynnaker.pyNN.data import SpynnakerDataView
from spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence import (
AbstractTimingDependence)
from spynnaker.pyNN.models.neuron.plasticity.stdp.synapse_structure import (
SynapseStructureWeightOnly)
from spynnaker.pyNN.models.neuron.plasticity.stdp.common import (
float_to_fixed, get_exp_lut_array)
class TimingDependenceVogels2011(AbstractTimingDependence):
"""
A timing dependence STDP rule due to Vogels (2011).
"""
__slots__ = (
"__alpha",
"__tau",
"__tau_data",
"__a_plus",
"__a_minus")
__PARAM_NAMES = ('alpha', 'tau')
default_parameters = {'tau': 20.0}
def __init__(self, alpha: float, tau: float = default_parameters['tau'],
A_plus: float = 0.01, A_minus: float = 0.01):
r"""
:param float alpha: :math:`\alpha`
:param float tau: :math:`\tau`
:param float A_plus: :math:`A^+`
:param float A_minus: :math:`A^-`
"""
super().__init__(SynapseStructureWeightOnly())
self.__alpha = alpha
self.__tau = tau
self.__a_plus = A_plus
self.__a_minus = A_minus
self.__tau_data = get_exp_lut_array(
SpynnakerDataView.get_simulation_time_step_ms(), self.__tau)
@property
def alpha(self):
r"""
:math:`\alpha`
:rtype: float
"""
return self.__alpha
@property
def tau(self):
r"""
:math:`\tau`
:rtype: float
"""
return self.__tau
@property
def A_plus(self):
r"""
:math:`A^+`
:rtype: float
"""
return self.__a_plus
@A_plus.setter
def A_plus(self, new_value):
self.__a_plus = new_value
@property
def A_minus(self):
r"""
:math:`A^-`
:rtype: float
"""
return self.__a_minus
@A_minus.setter
def A_minus(self, new_value):
self.__a_minus = new_value
[docs]
@overrides(AbstractTimingDependence.is_same_as)
def is_same_as(self, timing_dependence: AbstractTimingDependence) -> bool:
if not isinstance(timing_dependence, TimingDependenceVogels2011):
return False
return (self.__tau == timing_dependence.tau and
self.__alpha == timing_dependence.alpha)
@property
def vertex_executable_suffix(self):
"""
The suffix to be appended to the vertex executable for this rule.
:rtype: str
"""
return "vogels_2011"
@property
def pre_trace_n_bytes(self):
"""
The number of bytes used by the pre-trace of the rule per neuron.
:rtype: int
"""
# Trace entries consist of a single 16-bit number
return BYTES_PER_SHORT
[docs]
@overrides(AbstractTimingDependence.get_parameters_sdram_usage_in_bytes)
def get_parameters_sdram_usage_in_bytes(self) -> int:
return BYTES_PER_WORD + BYTES_PER_WORD * len(self.__tau_data)
@property
def n_weight_terms(self):
"""
The number of weight terms expected by this timing rule.
:rtype: int
"""
return 1
[docs]
@overrides(AbstractTimingDependence.write_parameters)
def write_parameters(
self, spec: DataSpecificationBase, global_weight_scale: float,
synapse_weight_scales: NDArray[floating]):
# Write alpha to spec
fixed_point_alpha = float_to_fixed(self.__alpha)
spec.write_value(data=fixed_point_alpha, data_type=DataType.INT32)
# Write lookup table
spec.write_array(self.__tau_data)
[docs]
@overrides(AbstractTimingDependence.get_parameter_names)
def get_parameter_names(self) -> Iterable[str]:
return self.__PARAM_NAMES