Source code for spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.abstract_weight_dependence

# Copyright (c) 2015 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from numpy import floating
from numpy.typing import NDArray
from spinn_utilities.abstract_base import AbstractBase, abstractmethod
from spinn_front_end_common.interface.ds import DataSpecificationBase
from spynnaker.pyNN.models.neuron.synapse_dynamics import (
    AbstractHasParameterNames)


class AbstractWeightDependence(
        AbstractHasParameterNames, metaclass=AbstractBase):
    """
    API with the weight dependency methods.
    """
    __slots__ = ()

[docs] @abstractmethod def is_same_as( self, weight_dependence: "AbstractWeightDependence") -> bool: """ Determine if this weight dependence is the same as another. :param AbstractWeightDependence weight_dependence: :rtype: bool """ raise NotImplementedError
@property @abstractmethod def vertex_executable_suffix(self) -> str: """ The suffix to be appended to the vertex executable for this rule. :rtype: str """ raise NotImplementedError
[docs] @abstractmethod def get_parameters_sdram_usage_in_bytes( self, n_synapse_types: int, n_weight_terms: int) -> int: """ Get the amount of SDRAM used by the parameters of this rule. :param int n_synapse_types: :param int n_weight_terms: :rtype: int """ raise NotImplementedError
[docs] @abstractmethod def write_parameters( self, spec: DataSpecificationBase, global_weight_scale: float, synapse_weight_scales: NDArray[floating], n_weight_terms: int) -> None: """ Write the parameters of the rule to the spec. :param ~data_specification.DataSpecificationGenerator spec: The specification to write to :param float global_weight_scale: The weight scale applied globally :param list(float) synapse_weight_scales: The total weight scale applied to each synapse including the global weight scale :param int n_weight_terms: The number of terms used by the synapse rule """ raise NotImplementedError
@property @abstractmethod def weight_maximum(self) -> float: """ The maximum weight that will ever be set in a synapse as a result of this rule. :rtype: float """ raise NotImplementedError