Source code for spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.weight_dependence_additive_triplet

# Copyright (c) 2017 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterable

from numpy import floating
from numpy.typing import NDArray

from spinn_utilities.overrides import overrides

from spinn_front_end_common.interface.ds import (
    DataType, DataSpecificationBase)
from spinn_front_end_common.utilities.constants import BYTES_PER_WORD

from .abstract_has_a_plus_a_minus import AbstractHasAPlusAMinus
from .abstract_weight_dependence import AbstractWeightDependence

# Six words per synapse type
_SPACE_PER_SYNAPSE_TYPE = 6 * BYTES_PER_WORD


class WeightDependenceAdditiveTriplet(
        AbstractHasAPlusAMinus, AbstractWeightDependence):
    """
    An triplet-based additive weight dependence STDP rule.
    """
    __slots__ = (
        "__a3_minus",
        "__a3_plus",
        "__w_max",
        "__w_min")
    __PARAM_NAMES = ('w_min', 'w_max', 'A3_plus', 'A3_minus')

    default_parameters = {'w_min': 0.0, 'w_max': 1.0, 'A3_plus': 0.01,
                          'A3_minus': 0.01}

    # noinspection PyPep8Naming
    def __init__(
            self, w_min: float = default_parameters['w_min'],
            w_max: float = default_parameters['w_max'],
            A3_plus: float = default_parameters['A3_plus'],
            A3_minus: float = default_parameters['A3_minus']):
        """
        :param float w_min: :math:`w^{min}`
        :param float w_max: :math:`w^{max}`
        :param float A3_plus: :math:`A_3^+`
        :param float A3_minus: :math:`A_3^-`
        """
        super().__init__()
        self.__w_min = w_min
        self.__w_max = w_max
        self.__a3_plus = A3_plus
        self.__a3_minus = A3_minus

    @property
    def w_min(self) -> float:
        """
        :math:`w^{min}`

        :rtype: float
        """
        return self.__w_min

    @property
    def w_max(self) -> float:
        """
        :math:`w^{max}`

        :rtype: float
        """
        return self.__w_max

    @property
    def A3_plus(self) -> float:
        """
        :math:`A_3^+`

        :rtype: float
        """
        # pylint: disable=invalid-name
        return self.__a3_plus

    @property
    def A3_minus(self) -> float:
        """
        :math:`A_3^-`

        :rtype: float
        """
        # pylint: disable=invalid-name
        return self.__a3_minus

[docs] @overrides(AbstractWeightDependence.is_same_as) def is_same_as(self, weight_dependence: AbstractWeightDependence) -> bool: if not isinstance(weight_dependence, WeightDependenceAdditiveTriplet): return False return ( (self.__w_min == weight_dependence.w_min) and (self.__w_max == weight_dependence.w_max) and (self.A_plus == weight_dependence.A_plus) and (self.A_minus == weight_dependence.A_minus) and (self.__a3_plus == weight_dependence.A3_plus) and (self.__a3_minus == weight_dependence.A3_minus))
@property def vertex_executable_suffix(self) -> str: """ The suffix to be appended to the vertex executable for this rule. :rtype: str """ return "additive"
[docs] @overrides(AbstractWeightDependence.get_parameters_sdram_usage_in_bytes) def get_parameters_sdram_usage_in_bytes( self, n_synapse_types: int, n_weight_terms: int) -> int: if n_weight_terms != 2: raise NotImplementedError( "Additive weight dependence only supports one or two terms") return _SPACE_PER_SYNAPSE_TYPE * n_synapse_types
[docs] @overrides(AbstractWeightDependence.write_parameters) def write_parameters( self, spec: DataSpecificationBase, global_weight_scale: float, synapse_weight_scales: NDArray[floating], n_weight_terms: int): # Loop through each synapse type for _ in synapse_weight_scales: # Scale the weights spec.write_value(data=self.__w_min * global_weight_scale, data_type=DataType.S1615) spec.write_value(data=self.__w_max * global_weight_scale, data_type=DataType.S1615) # pylint: disable=wrong-spelling-in-comment # Based on http://data.andrewdavison.info/docs/PyNN/_modules/pyNN # /standardmodels/synapses.html # Pre-multiply A+ and A- by Wmax spec.write_value( data=self.A_plus * self.__w_max * global_weight_scale, data_type=DataType.S1615) spec.write_value( data=self.A_minus * self.__w_max * global_weight_scale, data_type=DataType.S1615) spec.write_value( data=self.__a3_plus * self.__w_max * global_weight_scale, data_type=DataType.S1615) spec.write_value( data=self.__a3_minus * self.__w_max * global_weight_scale, data_type=DataType.S1615)
@property def weight_maximum(self) -> float: """ The maximum weight that will ever be set in a synapse as a result of this rule. :rtype: float """ return self.__w_max
[docs] @overrides(AbstractWeightDependence.get_parameter_names) def get_parameter_names(self) -> Iterable[str]: return self.__PARAM_NAMES