Source code for spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.weight_dependence_multiplicative
# Copyright (c) 2015 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterable
from numpy import floating
from numpy.typing import NDArray
from spinn_utilities.overrides import overrides
from spinn_front_end_common.interface.ds import (
DataType, DataSpecificationBase)
from spinn_front_end_common.utilities.constants import BYTES_PER_WORD
from .abstract_has_a_plus_a_minus import AbstractHasAPlusAMinus
from .abstract_weight_dependence import AbstractWeightDependence
# Four words per synapse type
_SPACE_PER_SYNAPSE_TYPE = 4 * BYTES_PER_WORD
class WeightDependenceMultiplicative(
AbstractHasAPlusAMinus, AbstractWeightDependence):
"""
A multiplicative weight dependence STDP rule.
"""
__slots__ = (
"__w_max",
"__w_min")
__PARAM_NAMES = ('w_min', 'w_max', 'A_plus', 'A_minus')
def __init__(self, w_min: float = 0.0, w_max: float = 1.0):
"""
:param float w_min: :math:`w^{min}`
:param float w_max: :math:`w^{max}`
"""
super().__init__()
self.__w_min = w_min
self.__w_max = w_max
@property
def w_min(self) -> float:
"""
:math:`w^{min}`
:rtype: float
"""
return self.__w_min
@property
def w_max(self) -> float:
"""
:math:`w^{max}`
:rtype: float
"""
return self.__w_max
[docs]
@overrides(AbstractWeightDependence.is_same_as)
def is_same_as(self, weight_dependence: AbstractWeightDependence) -> bool:
if not isinstance(weight_dependence, WeightDependenceMultiplicative):
return False
return (
(self.__w_min == weight_dependence.w_min) and
(self.__w_max == weight_dependence.w_max) and
(self.A_plus == weight_dependence.A_plus) and
(self.A_minus == weight_dependence.A_minus))
@property
def vertex_executable_suffix(self) -> str:
"""
The suffix to be appended to the vertex executable for this rule.
:rtype: str
"""
return "multiplicative"
[docs]
@overrides(AbstractWeightDependence.get_parameters_sdram_usage_in_bytes)
def get_parameters_sdram_usage_in_bytes(
self, n_synapse_types: int, n_weight_terms: int) -> int:
if n_weight_terms != 1:
raise NotImplementedError(
"Multiplicative weight dependence only supports single terms")
return _SPACE_PER_SYNAPSE_TYPE * n_synapse_types
[docs]
@overrides(AbstractWeightDependence.write_parameters)
def write_parameters(
self, spec: DataSpecificationBase, global_weight_scale: float,
synapse_weight_scales: NDArray[floating],
n_weight_terms: int) -> None:
if n_weight_terms != 1:
raise NotImplementedError(
"Multiplicative weight dependence only supports single terms")
# Loop through each synapse type
for _ in synapse_weight_scales:
spec.write_value(data=self.__w_min * global_weight_scale,
data_type=DataType.S1615)
spec.write_value(data=self.__w_max * global_weight_scale,
data_type=DataType.S1615)
spec.write_value(data=self.A_plus, data_type=DataType.S1615)
spec.write_value(data=self.A_minus, data_type=DataType.S1615)
@property
def weight_maximum(self) -> float:
"""
The maximum weight that will ever be set in a synapse as a result
of this rule.
:rtype: float
"""
return self.__w_max
[docs]
@overrides(AbstractWeightDependence.get_parameter_names)
def get_parameter_names(self) -> Iterable[str]:
return self.__PARAM_NAMES