Source code for spynnaker.pyNN.models.neuron.synapse_dynamics.abstract_plastic_synapse_dynamics

# Copyright (c) 2015 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Tuple, Union

from numpy import integer, uint32
from numpy.typing import NDArray

from spinn_utilities.abstract_base import AbstractBase, abstractmethod

from spynnaker.pyNN.models.neuron.synapse_dynamics.types import (
    ConnectionsArray)

from .abstract_sdram_synapse_dynamics import AbstractSDRAMSynapseDynamics


class AbstractPlasticSynapseDynamics(
        AbstractSDRAMSynapseDynamics, metaclass=AbstractBase):
    """
    Synapses which change over time.
    """
    # pylint: disable=too-many-arguments

    __slots__ = ()

[docs] @abstractmethod def get_n_words_for_plastic_connections(self, n_connections: int) -> int: """ Get the number of 32-bit words for `n_connections` in a single row. :param int n_connections: :rtype: int """ raise NotImplementedError
[docs] @abstractmethod def get_plastic_synaptic_data( self, connections: ConnectionsArray, connection_row_indices: NDArray[integer], n_rows: int, n_synapse_types: int, max_n_synapses: int, max_atoms_per_core: int) -> Union[ Tuple[NDArray[uint32], NDArray[uint32], NDArray[uint32], NDArray[uint32]], Tuple[List[NDArray[uint32]], List[NDArray[uint32]], NDArray[uint32], NDArray[uint32]]]: """ Get the fixed-plastic data, and plastic-plastic data for each row, and lengths for the fixed_plastic and plastic-plastic parts of each row. Data is returned as an array made up of an array of 32-bit words for each row, for each of the fixed-plastic and plastic-plastic data regions. The row into which connection should go is given by `connection_row_indices`, and the total number of rows is given by `n_rows`. Lengths are returned as an array made up of an integer for each row, for each of the fixed-plastic and plastic-plastic regions. :param ~numpy.ndarray connections: The connections to get data for :param ~numpy.ndarray connection_row_indices: The row into which each connection should go :param int n_rows: The total number of rows :param int n_synapse_types: The number of synapse types :param int max_n_synapses: The maximum number of synapses to generate :param int max_atoms_per_core: The maximum number of atoms on a core :return: (fp_data (2D), pp_data (2D), fp_size (1D), pp_size (1D)) :rtype: tuple(~numpy.ndarray, ~numpy.ndarray, ~numpy.ndarray, ~numpy.ndarray) """ raise NotImplementedError
[docs] @abstractmethod def get_n_plastic_plastic_words_per_row( self, pp_size: NDArray[uint32]) -> NDArray[integer]: """ Get the number of plastic plastic words to be read from each row. :param ~numpy.ndarray pp_size: """ raise NotImplementedError
[docs] @abstractmethod def get_n_fixed_plastic_words_per_row( self, fp_size: NDArray[uint32]) -> NDArray[integer]: """ Get the number of fixed plastic words to be read from each row. :param ~numpy.ndarray fp_size: """ raise NotImplementedError
[docs] @abstractmethod def get_n_synapses_in_rows( self, pp_size: NDArray[uint32], fp_size: NDArray[uint32]) -> NDArray[integer]: """ Get the number of synapses in each of the rows with plastic sizes `pp_size` and `fp_size`. :param ~numpy.ndarray pp_size: :param ~numpy.ndarray fp_size: """ raise NotImplementedError
[docs] @abstractmethod def read_plastic_synaptic_data( self, n_synapse_types: int, pp_size: NDArray[uint32], pp_data: List[NDArray[uint32]], fp_size: NDArray[uint32], fp_data: List[NDArray[uint32]], max_atoms_per_core: int) -> ConnectionsArray: """ Read the connections indicated in the connection indices from the data in `pp_data` and `fp_data`. :param int n_synapse_types: :param ~numpy.ndarray pp_size: 1D :param ~numpy.ndarray pp_data: 2D :param ~numpy.ndarray fp_size: 1D :param ~numpy.ndarray fp_data: 2D :param int max_atoms_per_core: :return: array with columns ``source``, ``target``, ``weight``, ``delay`` :rtype: ~numpy.ndarray """ raise NotImplementedError