Source code for spynnaker.pyNN.models.neuron.synapse_dynamics.abstract_sdram_synapse_dynamics

# Copyright (c) 2021 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import List, Optional

import numpy
from numpy import floating, integer, uint32
from numpy.typing import NDArray

from spinn_utilities.abstract_base import abstractmethod

from spinn_front_end_common.interface.ds import DataSpecificationBase

from .abstract_synapse_dynamics import AbstractSynapseDynamics
from .abstract_has_parameter_names import AbstractHasParameterNames


class AbstractSDRAMSynapseDynamics(
        AbstractSynapseDynamics, AbstractHasParameterNames):
    """
    How do the dynamics of a synapse interact with the rest of the model.
    """

    __slots__ = ()

[docs] @abstractmethod def is_same_as(self, synapse_dynamics: AbstractSynapseDynamics) -> bool: """ Determines if this synapse dynamics is the same as another. :param AbstractSynapseDynamics synapse_dynamics: :rtype: bool """ raise NotImplementedError
[docs] @abstractmethod def get_parameters_sdram_usage_in_bytes( self, n_neurons: int, n_synapse_types: int) -> int: """ Get the SDRAM usage of the synapse dynamics parameters in bytes. :param int n_neurons: :param int n_synapse_types: :rtype: int """ raise NotImplementedError
[docs] @abstractmethod def write_parameters( self, spec: DataSpecificationBase, region: int, global_weight_scale: float, synapse_weight_scales: NDArray[floating]): """ Write the synapse parameters to the spec. :param ~data_specification.DataSpecificationGenerator spec: The specification to write to :param int region: region ID to write to :param float global_weight_scale: The weight scale applied globally :param list(float) synapse_weight_scales: The total weight scale applied to each synapse including the global weight scale """ raise NotImplementedError
[docs] @abstractmethod def get_max_synapses(self, n_words: int) -> int: """ Get the maximum number of synapses that can be held in the given number of words. :param int n_words: The number of words the synapses must fit in :rtype: int """ raise NotImplementedError
@property @abstractmethod def pad_to_length(self) -> Optional[int]: """ The amount each row should pad to, or `None` if not specified. """ raise NotImplementedError
[docs] def convert_per_connection_data_to_rows( self, connection_row_indices: NDArray[integer], n_rows: int, data: NDArray, max_n_synapses: int) -> List[NDArray]: """ Converts per-connection data generated from connections into row-based data to be returned from get_synaptic_data. :param ~numpy.ndarray connection_row_indices: The index of the row that each item should go into :param int n_rows: The number of rows :param ~numpy.ndarray data: The non-row-based data :param int max_n_synapses: The maximum number of synapses to generate in each row :rtype: list(~numpy.ndarray) """ return [ data[connection_row_indices == i][:max_n_synapses].reshape(-1) for i in range(n_rows)]
[docs] def get_n_items( self, rows: List[NDArray], item_size: int) -> NDArray[uint32]: """ Get the number of items in each row as 4-byte values, given the item size. :param ~numpy.ndarray rows: :param int item_size: :rtype: ~numpy.ndarray """ return numpy.array([ int(math.ceil(float(row.size) / float(item_size))) for row in rows], dtype=uint32).reshape((-1, 1))
[docs] def get_words(self, rows: List[NDArray]) -> List[NDArray[uint32]]: """ Convert the row data to words. :param ~numpy.ndarray rows: :rtype: ~numpy.ndarray """ words = [numpy.pad( row, (0, (4 - (row.size % 4)) & 0x3), mode="constant", constant_values=0).view(uint32) for row in rows] return words