Source code for spynnaker.pyNN.models.neural_projections.connectors.array_connector

# Copyright (c) 2017 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations
from typing import Sequence, Optional, TYPE_CHECKING

import numpy
from numpy import uint8
from numpy.typing import NDArray

from spinn_utilities.overrides import overrides

from pacman.model.graphs.common import Slice

from .abstract_connector import AbstractConnector
from .abstract_generate_connector_on_host import (
    AbstractGenerateConnectorOnHost)

if TYPE_CHECKING:
    from spynnaker.pyNN.models.neural_projections import SynapseInformation


class ArrayConnector(AbstractConnector, AbstractGenerateConnectorOnHost):
    """
    Make connections using an array of integers based on the IDs
    of the neurons in the pre- and post-populations.
    """

    __slots__ = (
        "__array",
        "__array_dims",
        "__n_total_connections")

    def __init__(self, array: NDArray[uint8],
                 safe=True, callback=None, verbose=False):
        """
        :param array:
            An explicit Boolean matrix that specifies the connections
            between the pre- and post-populations
            (see PyNN documentation). Must be 2D in practice.
        :type array: ~numpy.ndarray(2, ~numpy.uint8)
        :param bool safe:
            Whether to check that weights and delays have valid values.
            If False, this check is skipped.
        :param callable callback:
            if given, a callable that display a progress bar on the terminal.

            .. note::
                Not supported by sPyNNaker.
        :param bool verbose:
            Whether to output extra information about the connectivity to a
            CSV file
        """
        super().__init__(safe, callback, verbose)
        self.__array = array
        # we can get the total number of connections straight away
        # from the Boolean matrix
        n_total_connections = 0
        # array shape
        dims = array.shape
        for i in range(dims[0]):
            for j in range(dims[1]):
                if array[i, j] == 1:
                    n_total_connections += 1

        self.__n_total_connections = n_total_connections
        self.__array_dims = dims

[docs] @overrides(AbstractConnector.get_delay_maximum) def get_delay_maximum(self, synapse_info: SynapseInformation) -> float: return self._get_delay_maximum( synapse_info.delays, len(self.__array), synapse_info)
[docs] @overrides(AbstractConnector.get_delay_minimum) def get_delay_minimum(self, synapse_info: SynapseInformation) -> float: return self._get_delay_minimum( synapse_info.delays, len(self.__array), synapse_info)
[docs] @overrides(AbstractConnector.get_n_connections_from_pre_vertex_maximum) def get_n_connections_from_pre_vertex_maximum( self, n_post_atoms: int, synapse_info: SynapseInformation, min_delay: Optional[float] = None, max_delay: Optional[float] = None) -> int: # Break the array into n_post_atoms units split_positions = numpy.arange( 0, synapse_info.n_post_neurons, n_post_atoms) split_array = numpy.array_split(self.__array, split_positions) # Sum the 1s in each split row sum_rows = [numpy.sum(s, axis=1) for s in split_array] # Find the maximum of the rows max_connections_row = max([x for y in sum_rows for x in y]) if min_delay is None or max_delay is None: return max_connections_row return self._get_n_connections_from_pre_vertex_with_delay_maximum( synapse_info.delays, self.__n_total_connections, max_connections_row, min_delay, max_delay, synapse_info)
[docs] @overrides(AbstractConnector.get_n_connections_to_post_vertex_maximum) def get_n_connections_to_post_vertex_maximum( self, synapse_info: SynapseInformation) -> int: # Max number per column is required max_connections_col = 0 for j in range(self.__array_dims[1]): n_connections_col = 0 for i in range(self.__array_dims[0]): if self.__array[i, j] == 1: n_connections_col = 0 if n_connections_col > max_connections_col: max_connections_col = n_connections_col return max_connections_col
[docs] @overrides(AbstractConnector.get_weight_maximum) def get_weight_maximum(self, synapse_info: SynapseInformation) -> float: return self._get_weight_maximum( synapse_info.weights, self.__n_total_connections, synapse_info)
[docs] @overrides(AbstractGenerateConnectorOnHost.create_synaptic_block) def create_synaptic_block( self, post_slices: Sequence[Slice], post_vertex_slice: Slice, synapse_type: int, synapse_info: SynapseInformation) -> NDArray: pre_neurons = [] post_neurons = [] n_connections = 0 for i in range(synapse_info.n_pre_neurons): for j in post_vertex_slice.get_raster_ids(): if self.__array[i, j] == 1: pre_neurons.append(i) post_neurons.append(j) n_connections += 1 # Feed the arrays calculated above into the block structure block = numpy.zeros( n_connections, dtype=AbstractConnector.NUMPY_SYNAPSES_DTYPE) block["source"] = synapse_info.pre_vertex.get_key_ordered_indices( numpy.array(pre_neurons)) block["target"] = post_vertex_slice.get_relative_indices( numpy.array(post_neurons)) block["weight"] = self._generate_weights( block["source"], block["target"], n_connections, post_vertex_slice, synapse_info) block["delay"] = self._generate_delays( block["source"], block["target"], n_connections, post_vertex_slice, synapse_info) block["synapse_type"] = synapse_type return block
def __repr__(self): return f"ArrayConnector({self.__array})"