Source code for spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.abstract_timing_dependence
# Copyright (c) 2015 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from numpy import floating
from numpy.typing import NDArray
from spinn_utilities.abstract_base import AbstractBase, abstractmethod
from spinn_front_end_common.interface.ds import DataSpecificationBase
from spynnaker.pyNN.models.neuron.synapse_dynamics import (
AbstractHasParameterNames)
from spynnaker.pyNN.models.neuron.plasticity.stdp.synapse_structure import (
AbstractSynapseStructure)
class AbstractTimingDependence(
AbstractHasParameterNames, metaclass=AbstractBase):
"""
An STDP timing dependence rule.
"""
__slots__ = ("__synapse_structure", )
def __init__(self, synapse_structure: AbstractSynapseStructure):
"""
:param synapse_structure:
The synaptic structure of the plastic part of the rows.
"""
self.__synapse_structure = synapse_structure
[docs]
@abstractmethod
def is_same_as(
self, timing_dependence: 'AbstractTimingDependence') -> bool:
"""
Determine if this timing dependence is the same as another.
:param AbstractTimingDependence timing_dependence:
:rtype: bool
"""
raise NotImplementedError
@property
@abstractmethod
def vertex_executable_suffix(self) -> str:
"""
The suffix to be appended to the vertex executable for this rule.
:rtype: str
"""
raise NotImplementedError
@property
@abstractmethod
def pre_trace_n_bytes(self) -> int:
"""
The number of bytes used by the pre-trace of the rule per neuron.
:rtype: int
"""
raise NotImplementedError
[docs]
@abstractmethod
def get_parameters_sdram_usage_in_bytes(self) -> int:
"""
Get the amount of SDRAM used by the parameters of this rule.
:rtype: int
"""
raise NotImplementedError
@property
@abstractmethod
def n_weight_terms(self) -> int:
"""
The number of weight terms expected by this timing rule.
:rtype: int
"""
raise NotImplementedError
[docs]
@abstractmethod
def write_parameters(
self, spec: DataSpecificationBase, global_weight_scale: float,
synapse_weight_scales: NDArray[floating]):
"""
Write the parameters of the rule to the spec.
:param ~data_specification.DataSpecificationGenerator spec:
The specification to write to
:param float global_weight_scale: The weight scale applied globally
:param list(float) synapse_weight_scales:
The total weight scale applied to each synapse including the global
weight scale
"""
raise NotImplementedError
@property
def synaptic_structure(self) -> AbstractSynapseStructure:
"""
The synaptic structure of the plastic part of the rows.
:rtype: AbstractSynapseStructure
"""
return self.__synapse_structure
@property
@abstractmethod
def A_plus(self):
r"""
:math:`A^+`
:rtype: float
"""
# pylint: disable=invalid-name
raise NotImplementedError
@property
@abstractmethod
def A_minus(self):
r"""
:math:`A^-`
:rtype: float
"""
# pylint: disable=invalid-name
raise NotImplementedError