Source code for spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.abstract_timing_dependence

# Copyright (c) 2015 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from numpy import floating
from numpy.typing import NDArray
from spinn_utilities.abstract_base import AbstractBase, abstractmethod
from spinn_front_end_common.interface.ds import DataSpecificationBase
from spynnaker.pyNN.models.neuron.synapse_dynamics import (
    AbstractHasParameterNames)
from spynnaker.pyNN.models.neuron.plasticity.stdp.synapse_structure import (
    AbstractSynapseStructure)


class AbstractTimingDependence(
        AbstractHasParameterNames, metaclass=AbstractBase):
    """
    An STDP timing dependence rule.
    """
    __slots__ = ("__synapse_structure", )

    def __init__(self, synapse_structure: AbstractSynapseStructure):
        """
        :param synapse_structure:
            The synaptic structure of the plastic part of the rows.
        """
        self.__synapse_structure = synapse_structure

[docs] @abstractmethod def is_same_as( self, timing_dependence: 'AbstractTimingDependence') -> bool: """ Determine if this timing dependence is the same as another. :param AbstractTimingDependence timing_dependence: :rtype: bool """ raise NotImplementedError
@property @abstractmethod def vertex_executable_suffix(self) -> str: """ The suffix to be appended to the vertex executable for this rule. :rtype: str """ raise NotImplementedError @property @abstractmethod def pre_trace_n_bytes(self) -> int: """ The number of bytes used by the pre-trace of the rule per neuron. :rtype: int """ raise NotImplementedError
[docs] @abstractmethod def get_parameters_sdram_usage_in_bytes(self) -> int: """ Get the amount of SDRAM used by the parameters of this rule. :rtype: int """ raise NotImplementedError
@property @abstractmethod def n_weight_terms(self) -> int: """ The number of weight terms expected by this timing rule. :rtype: int """ raise NotImplementedError
[docs] @abstractmethod def write_parameters( self, spec: DataSpecificationBase, global_weight_scale: float, synapse_weight_scales: NDArray[floating]): """ Write the parameters of the rule to the spec. :param ~data_specification.DataSpecificationGenerator spec: The specification to write to :param float global_weight_scale: The weight scale applied globally :param list(float) synapse_weight_scales: The total weight scale applied to each synapse including the global weight scale """ raise NotImplementedError
@property def synaptic_structure(self) -> AbstractSynapseStructure: """ The synaptic structure of the plastic part of the rows. :rtype: AbstractSynapseStructure """ return self.__synapse_structure @property @abstractmethod def A_plus(self): r""" :math:`A^+` :rtype: float """ # pylint: disable=invalid-name raise NotImplementedError @property @abstractmethod def A_minus(self): r""" :math:`A^-` :rtype: float """ # pylint: disable=invalid-name raise NotImplementedError