spynnaker.pyNN.models.neuron.structural_plasticity.synaptogenesis.formation package¶
Module contents¶
- class spynnaker.pyNN.models.neuron.structural_plasticity.synaptogenesis.formation.AbstractFormation¶
Bases:
AbstractHasParameterNames
A synaptic connection formation rule.
- abstract get_parameters_sdram_usage_in_bytes() int [source]¶
Get the amount of SDRAM used by the parameters of this rule.
- Return type:
- abstract property vertex_executable_suffix: str¶
The suffix to be appended to the vertex executable for this rule.
- Return type:
- abstract write_parameters(spec: DataSpecificationGenerator)[source]¶
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator)
- class spynnaker.pyNN.models.neuron.structural_plasticity.synaptogenesis.formation.DistanceDependentFormation(grid: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] = (16, 16), p_form_forward: float = 0.16, sigma_form_forward: float = 2.5, p_form_lateral: float = 1.0, sigma_form_lateral: float = 1.0)¶
Bases:
AbstractFormation
Formation rule that depends on the physical distance between neurons.
- Parameters:
grid (tuple(int,int) or list(int) or ndarray(int)) – (x, y) dimensions of the grid of distance
p_form_forward (float) – The peak probability of formation on feed-forward connections
sigma_form_forward (float) – The spread of probability with distance of formation on feed-forward connections
p_form_lateral (float) – The peak probability of formation on lateral connections
sigma_form_lateral (float) – The spread of probability with distance of formation on lateral connections
- distance(x0: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], x1: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], metric) ndarray[Any, dtype[floating]] [source]¶
Compute the distance between points x0 and x1 place on the grid using periodic boundary conditions.
- generate_distance_probability_array(probability: float, sigma: float) ndarray[Any, dtype[uint16]] [source]¶
Generate the exponentially decaying probability LUTs.
- get_parameter_names() Iterable[str] [source]¶
Get the parameter names available from the component.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes() int [source]¶
Get the amount of SDRAM used by the parameters of this rule.
- Return type:
- property vertex_executable_suffix: str¶
The suffix to be appended to the vertex executable for this rule.
- Return type:
- write_parameters(spec: DataSpecificationBase)[source]¶
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator)