spynnaker.pyNN package¶
Subpackages¶
- spynnaker.pyNN.connections package
- Module contents
EthernetCommandConnection
EthernetControlConnection
SPIFLiveSpikesConnection
SpynnakerLiveSpikesConnection
SpynnakerPoissonControlConnection
SpynnakerPoissonControlConnection.add_init_callback()
SpynnakerPoissonControlConnection.add_pause_stop_callback()
SpynnakerPoissonControlConnection.add_poisson_label()
SpynnakerPoissonControlConnection.add_receive_callback()
SpynnakerPoissonControlConnection.add_start_callback()
SpynnakerPoissonControlConnection.add_start_resume_callback()
SpynnakerPoissonControlConnection.set_rate()
SpynnakerPoissonControlConnection.set_rates()
- Module contents
- spynnaker.pyNN.data package
- Submodules
- spynnaker.pyNN.data.spynnaker_data_writer module
- Module contents
SpynnakerDataView
SpynnakerDataView.add_population()
SpynnakerDataView.add_projection()
SpynnakerDataView.get_min_delay()
SpynnakerDataView.get_n_populations()
SpynnakerDataView.get_n_projections()
SpynnakerDataView.get_segment_counter()
SpynnakerDataView.get_sim_name()
SpynnakerDataView.has_min_delay()
SpynnakerDataView.iterate_populations()
SpynnakerDataView.iterate_projections()
SpynnakerDataView.set_number_of_neurons_per_dimension_per_core()
- spynnaker.pyNN.external_devices package
- spynnaker.pyNN.external_devices_models package
- Subpackages
- Submodules
- spynnaker.pyNN.external_devices_models.external_device_lif_control_vertex module
ExternalDeviceLifControlVertex
ExternalDeviceLifControlVertex.dependent_vertices()
ExternalDeviceLifControlVertex.edge_partition_identifiers_for_dependent_vertex()
ExternalDeviceLifControlVertex.get_atom_key_map()
ExternalDeviceLifControlVertex.get_external_devices()
ExternalDeviceLifControlVertex.get_fixed_key_and_mask()
ExternalDeviceLifControlVertex.get_message_translator()
ExternalDeviceLifControlVertex.get_outgoing_partition_ids()
- spynnaker.pyNN.external_devices_models.spif_devices module
N_FIELDS
N_FILTERS
N_INPUTS
N_PIPES
SPIFRegister
SPIFRegister.CONFIG_PKT_CNT
SPIFRegister.DIST_KEY_BASE
SPIFRegister.DIST_MASK_BASE
SPIFRegister.DIST_SHIFT_BASE
SPIFRegister.DROPPED_PKT_CNT
SPIFRegister.FL_MASK_BASE
SPIFRegister.FL_VALUE_BASE
SPIFRegister.IN_PERIPH_PKT_CNT
SPIFRegister.IR_KEY_BASE
SPIFRegister.IR_MASK_BASE
SPIFRegister.IR_ROUTE_BASE
SPIFRegister.MP_FLD_LIMIT_BASE
SPIFRegister.MP_FLD_MASK_BASE
SPIFRegister.MP_FLD_SHIFT_BASE
SPIFRegister.MP_KEY_BASE
SPIFRegister.OUT_PERIPH_PKT_CNT
SPIFRegister.REPLY_KEY
SPIFRegister.cmd()
SPIFRegister.delayed_command()
SPIF_FPGA_ID
SPIF_INPUT_FPGA_LINKS
SPIF_OUTPUT_FPGA_LINK
SpiNNFPGARegister
SpiNNFPGARegister.LC_KEY
SpiNNFPGARegister.LC_MASK
SpiNNFPGARegister.P_KEY
SpiNNFPGARegister.P_MASK
SpiNNFPGARegister.RC_KEY
SpiNNFPGARegister.RC_MASK
SpiNNFPGARegister.START
SpiNNFPGARegister.STOP
SpiNNFPGARegister.XP_KEY_BASE
SpiNNFPGARegister.XP_MASK_BASE
SpiNNFPGARegister.cmd()
SpiNNFPGARegister.delayed_command()
set_distiller_key()
set_distiller_mask()
set_distiller_mask_delayed()
set_distiller_shift()
set_field_limit()
set_field_mask()
set_field_shift()
set_filter_mask()
set_filter_value()
set_input_key()
set_input_mask()
set_input_route()
set_mapper_key()
set_xp_key()
set_xp_key_delayed()
set_xp_mask()
set_xp_mask_delayed()
- Module contents
AbstractEthernetController
AbstractEthernetSensor
AbstractEthernetTranslator
AbstractMulticastControllableDevice
AbstractMulticastControllableDevice.device_control_first_send_timestep
AbstractMulticastControllableDevice.device_control_key
AbstractMulticastControllableDevice.device_control_max_value
AbstractMulticastControllableDevice.device_control_min_value
AbstractMulticastControllableDevice.device_control_partition_id
AbstractMulticastControllableDevice.device_control_scaling_factor
AbstractMulticastControllableDevice.device_control_send_type
AbstractMulticastControllableDevice.device_control_timesteps_between_sending
AbstractMulticastControllableDevice.device_control_uses_payload
ArbitraryFPGADevice
ExternalCochleaDevice
ExternalDeviceLifControl
ExternalFPGARetinaDevice
ExternalFPGARetinaDevice.DOWN_POLARITY
ExternalFPGARetinaDevice.MERGED_POLARITY
ExternalFPGARetinaDevice.MODE_128
ExternalFPGARetinaDevice.MODE_16
ExternalFPGARetinaDevice.MODE_32
ExternalFPGARetinaDevice.MODE_64
ExternalFPGARetinaDevice.UP_POLARITY
ExternalFPGARetinaDevice.get_fixed_key_and_mask()
ExternalFPGARetinaDevice.get_n_neurons()
ExternalFPGARetinaDevice.pause_stop_commands
ExternalFPGARetinaDevice.start_resume_commands
ExternalFPGARetinaDevice.timed_commands
ICUBRetinaDevice
MachineMunichMotorDevice
MachineMunichMotorDevice.INPUT_BUFFER_FULL_NAME
MachineMunichMotorDevice.MOTOR_PARTITION_ID
MachineMunichMotorDevice.generate_data_specification()
MachineMunichMotorDevice.get_binary_file_name()
MachineMunichMotorDevice.get_binary_start_type()
MachineMunichMotorDevice.get_n_keys_for_partition()
MachineMunichMotorDevice.parse_extra_provenance_items()
MachineMunichMotorDevice.reserve_memory_regions()
MachineMunichMotorDevice.sdram_required
MunichMotorDevice
MunichRetinaDevice
MunichRetinaDevice.DOWN_POLARITY
MunichRetinaDevice.LEFT_RETINA
MunichRetinaDevice.MERGED_POLARITY
MunichRetinaDevice.RIGHT_RETINA
MunichRetinaDevice.UP_POLARITY
MunichRetinaDevice.default_parameters
MunichRetinaDevice.get_fixed_key_and_mask()
MunichRetinaDevice.pause_stop_commands
MunichRetinaDevice.start_resume_commands
MunichRetinaDevice.timed_commands
SPIFOutputDevice
SPIFRetinaDevice
SPIFRetinaDevice.X_MASK
SPIFRetinaDevice.X_PER_ROW
SPIFRetinaDevice.Y_MASK
SPIFRetinaDevice.get_atom_key_map()
SPIFRetinaDevice.get_fixed_key_and_mask()
SPIFRetinaDevice.get_incoming_slice_for_link()
SPIFRetinaDevice.get_machine_fixed_key_and_mask()
SPIFRetinaDevice.get_shape_key_fields()
SPIFRetinaDevice.pause_stop_commands
SPIFRetinaDevice.start_resume_commands
SPIFRetinaDevice.timed_commands
SendType
ThresholdTypeMulticastDeviceControl
- spynnaker.pyNN.extra_algorithms package
- Subpackages
- Module contents
SpYNNakerConnectionHolderGenerator
SpYNNakerSynapticMatrixReport
delay_support_adder()
finish_connection_holders()
neuron_expander()
redundant_packet_count_report()
spynnaker_machine_bitField_pair_router_compressor()
spynnaker_machine_bitfield_ordered_covering_compressor()
spynnaker_neuron_graph_network_specification_report()
synapse_expander()
- spynnaker.pyNN.extra_models package
- spynnaker.pyNN.model_binaries package
- spynnaker.pyNN.models package
- Subpackages
- spynnaker.pyNN.models.abstract_models package
- spynnaker.pyNN.models.common package
- spynnaker.pyNN.models.current_sources package
- spynnaker.pyNN.models.neural_projections package
- spynnaker.pyNN.models.neuron package
- Subpackages
- Submodules
- spynnaker.pyNN.models.neuron.generator_data module
- spynnaker.pyNN.models.neuron.master_pop_table module
- spynnaker.pyNN.models.neuron.neuron_data module
- spynnaker.pyNN.models.neuron.population_machine_common module
- spynnaker.pyNN.models.neuron.population_machine_synapses module
- spynnaker.pyNN.models.neuron.synapse_io module
- spynnaker.pyNN.models.neuron.synaptic_matrices module
- spynnaker.pyNN.models.neuron.synaptic_matrix_app module
- Module contents
- spynnaker.pyNN.models.populations package
- spynnaker.pyNN.models.spike_source package
- spynnaker.pyNN.models.utility_models package
- Submodules
- spynnaker.pyNN.models.abstract_pynn_model module
AbstractPyNNModel
AbstractPyNNModel.absolute_max_atoms_per_core
AbstractPyNNModel.create_vertex()
AbstractPyNNModel.default_initial_values
AbstractPyNNModel.default_parameters
AbstractPyNNModel.default_population_parameters
AbstractPyNNModel.describe()
AbstractPyNNModel.get_model_max_atoms_per_dimension_per_core()
AbstractPyNNModel.get_parameter_names()
AbstractPyNNModel.has_parameter()
AbstractPyNNModel.name
AbstractPyNNModel.set_model_max_atoms_per_dimension_per_core()
- spynnaker.pyNN.models.defaults module
- spynnaker.pyNN.models.projection module
- spynnaker.pyNN.models.recorder module
- Module contents
- Subpackages
- spynnaker.pyNN.protocols package
- Module contents
MUNICH_MODES
MunichIoEthernetProtocol
MunichIoEthernetProtocol.disable_motor()
MunichIoEthernetProtocol.disable_retina()
MunichIoEthernetProtocol.enable_motor()
MunichIoEthernetProtocol.enable_retina()
MunichIoEthernetProtocol.laser_active_time()
MunichIoEthernetProtocol.laser_frequency()
MunichIoEthernetProtocol.laser_total_period()
MunichIoEthernetProtocol.led_back_active_time()
MunichIoEthernetProtocol.led_frequency()
MunichIoEthernetProtocol.led_front_active_time()
MunichIoEthernetProtocol.led_total_period()
MunichIoEthernetProtocol.motor_0_leaky_velocity()
MunichIoEthernetProtocol.motor_0_permanent_velocity()
MunichIoEthernetProtocol.motor_1_leaky_velocity()
MunichIoEthernetProtocol.motor_1_permanent_velocity()
MunichIoEthernetProtocol.set_retina_transmission()
MunichIoEthernetProtocol.speaker_active_time()
MunichIoEthernetProtocol.speaker_frequency()
MunichIoEthernetProtocol.speaker_total_period()
MunichIoSpiNNakerLinkProtocol
MunichIoSpiNNakerLinkProtocol.add_payload_logic_to_current_output()
MunichIoSpiNNakerLinkProtocol.add_payload_logic_to_current_output_key
MunichIoSpiNNakerLinkProtocol.bias_values()
MunichIoSpiNNakerLinkProtocol.bias_values_key
MunichIoSpiNNakerLinkProtocol.configure_master_key()
MunichIoSpiNNakerLinkProtocol.configure_master_key_key
MunichIoSpiNNakerLinkProtocol.disable_retina()
MunichIoSpiNNakerLinkProtocol.disable_retina_key
MunichIoSpiNNakerLinkProtocol.enable_disable_motor_key
MunichIoSpiNNakerLinkProtocol.generic_motor0_raw_output_leak_to_0()
MunichIoSpiNNakerLinkProtocol.generic_motor0_raw_output_leak_to_0_key
MunichIoSpiNNakerLinkProtocol.generic_motor0_raw_output_permanent()
MunichIoSpiNNakerLinkProtocol.generic_motor0_raw_output_permanent_key
MunichIoSpiNNakerLinkProtocol.generic_motor1_raw_output_leak_to_0()
MunichIoSpiNNakerLinkProtocol.generic_motor1_raw_output_leak_to_0_key
MunichIoSpiNNakerLinkProtocol.generic_motor1_raw_output_permanent()
MunichIoSpiNNakerLinkProtocol.generic_motor1_raw_output_permanent_key
MunichIoSpiNNakerLinkProtocol.generic_motor_disable()
MunichIoSpiNNakerLinkProtocol.generic_motor_enable()
MunichIoSpiNNakerLinkProtocol.generic_motor_total_period()
MunichIoSpiNNakerLinkProtocol.generic_motor_total_period_key
MunichIoSpiNNakerLinkProtocol.instance_key
MunichIoSpiNNakerLinkProtocol.master_slave_key
MunichIoSpiNNakerLinkProtocol.master_slave_set_master_clock_active()
MunichIoSpiNNakerLinkProtocol.master_slave_set_master_clock_not_started()
MunichIoSpiNNakerLinkProtocol.master_slave_set_slave()
MunichIoSpiNNakerLinkProtocol.master_slave_use_internal_counter()
MunichIoSpiNNakerLinkProtocol.mode
MunichIoSpiNNakerLinkProtocol.poll_individual_sensor_continuously()
MunichIoSpiNNakerLinkProtocol.poll_individual_sensor_continuously_key
MunichIoSpiNNakerLinkProtocol.poll_sensors_once()
MunichIoSpiNNakerLinkProtocol.poll_sensors_once_key
MunichIoSpiNNakerLinkProtocol.protocol_instance
MunichIoSpiNNakerLinkProtocol.push_bot_laser_config_active_time()
MunichIoSpiNNakerLinkProtocol.push_bot_laser_config_active_time_key
MunichIoSpiNNakerLinkProtocol.push_bot_laser_config_total_period()
MunichIoSpiNNakerLinkProtocol.push_bot_laser_config_total_period_key
MunichIoSpiNNakerLinkProtocol.push_bot_laser_set_frequency()
MunichIoSpiNNakerLinkProtocol.push_bot_laser_set_frequency_key
MunichIoSpiNNakerLinkProtocol.push_bot_led_back_active_time()
MunichIoSpiNNakerLinkProtocol.push_bot_led_back_active_time_key
MunichIoSpiNNakerLinkProtocol.push_bot_led_front_active_time()
MunichIoSpiNNakerLinkProtocol.push_bot_led_front_active_time_key
MunichIoSpiNNakerLinkProtocol.push_bot_led_set_frequency()
MunichIoSpiNNakerLinkProtocol.push_bot_led_set_frequency_key
MunichIoSpiNNakerLinkProtocol.push_bot_led_total_period()
MunichIoSpiNNakerLinkProtocol.push_bot_led_total_period_key
MunichIoSpiNNakerLinkProtocol.push_bot_motor_0_leaking_towards_zero()
MunichIoSpiNNakerLinkProtocol.push_bot_motor_0_leaking_towards_zero_key
MunichIoSpiNNakerLinkProtocol.push_bot_motor_0_permanent()
MunichIoSpiNNakerLinkProtocol.push_bot_motor_0_permanent_key
MunichIoSpiNNakerLinkProtocol.push_bot_motor_1_leaking_towards_zero()
MunichIoSpiNNakerLinkProtocol.push_bot_motor_1_leaking_towards_zero_key
MunichIoSpiNNakerLinkProtocol.push_bot_motor_1_permanent()
MunichIoSpiNNakerLinkProtocol.push_bot_motor_1_permanent_key
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_config_active_time()
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_config_active_time_key
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_config_total_period()
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_config_total_period_key
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_set_melody()
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_set_melody_key
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_set_tone()
MunichIoSpiNNakerLinkProtocol.push_bot_speaker_set_tone_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_a_channel_0_ratio()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_a_channel_0_ratio_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_a_channel_1_ratio()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_a_channel_1_ratio_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_a_duration()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_a_duration_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_b_channel_0_ratio()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_b_channel_0_ratio_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_b_channel_1_ratio()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_b_channel_1_ratio_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_b_duration()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_b_duration_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_c_channel_0_ratio()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_c_channel_0_ratio_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_c_channel_1_ratio()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_c_channel_1_ratio_key
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_c_duration()
MunichIoSpiNNakerLinkProtocol.pwm_pin_output_timer_c_duration_key
MunichIoSpiNNakerLinkProtocol.query_state_of_io_lines()
MunichIoSpiNNakerLinkProtocol.query_state_of_io_lines_key
MunichIoSpiNNakerLinkProtocol.remove_payload_logic_to_current_output()
MunichIoSpiNNakerLinkProtocol.remove_payload_logic_to_current_output_key
MunichIoSpiNNakerLinkProtocol.reset_retina()
MunichIoSpiNNakerLinkProtocol.reset_retina_key
MunichIoSpiNNakerLinkProtocol.sensor_transmission_key()
MunichIoSpiNNakerLinkProtocol.sent_mode_command()
MunichIoSpiNNakerLinkProtocol.set_mode()
MunichIoSpiNNakerLinkProtocol.set_mode_key
MunichIoSpiNNakerLinkProtocol.set_output_pattern_for_payload()
MunichIoSpiNNakerLinkProtocol.set_output_pattern_for_payload_key
MunichIoSpiNNakerLinkProtocol.set_payload_pins_to_high_impedance()
MunichIoSpiNNakerLinkProtocol.set_payload_pins_to_high_impedance_key
MunichIoSpiNNakerLinkProtocol.set_retina_key()
MunichIoSpiNNakerLinkProtocol.set_retina_key_key
MunichIoSpiNNakerLinkProtocol.set_retina_transmission()
MunichIoSpiNNakerLinkProtocol.set_retina_transmission_key
MunichIoSpiNNakerLinkProtocol.turn_off_sensor_reporting()
MunichIoSpiNNakerLinkProtocol.turn_off_sensor_reporting_key
MunichIoSpiNNakerLinkProtocol.uart_id
RetinaKey
RetinaPayload
- Module contents
- spynnaker.pyNN.utilities package
- Subpackages
- Submodules
- spynnaker.pyNN.utilities.bit_field_utilities module
- spynnaker.pyNN.utilities.buffer_data_type module
- spynnaker.pyNN.utilities.constants module
- spynnaker.pyNN.utilities.data_population module
DataPopulation
DataPopulation.describe()
DataPopulation.find_units()
DataPopulation.get_data()
DataPopulation.get_spike_counts()
DataPopulation.id_to_index()
DataPopulation.index_to_id()
DataPopulation.label
DataPopulation.local_size
DataPopulation.mean_spike_count()
DataPopulation.size
DataPopulation.spinnaker_get_data()
DataPopulation.write_data()
- spynnaker.pyNN.utilities.extracted_data module
- spynnaker.pyNN.utilities.fake_HBP_Portal_machine_provider module
- spynnaker.pyNN.utilities.neo_buffer_database module
NeoBufferDatabase
NeoBufferDatabase.add_segment()
NeoBufferDatabase.array_to_string()
NeoBufferDatabase.clear_data()
NeoBufferDatabase.csv_block_metadata()
NeoBufferDatabase.csv_segment()
NeoBufferDatabase.get_empty_block()
NeoBufferDatabase.get_full_block()
NeoBufferDatabase.get_population()
NeoBufferDatabase.get_population_metdadata()
NeoBufferDatabase.get_recording_metadeta()
NeoBufferDatabase.get_recording_populations()
NeoBufferDatabase.get_recording_variables()
NeoBufferDatabase.get_spike_counts()
NeoBufferDatabase.spinnaker_get_data()
NeoBufferDatabase.string_to_array()
NeoBufferDatabase.write_metadata()
NeoBufferDatabase.write_segment_metadata()
NeoBufferDatabase.write_t_stop()
- spynnaker.pyNN.utilities.neo_compare module
- spynnaker.pyNN.utilities.neo_convertor module
- spynnaker.pyNN.utilities.neo_csv module
- spynnaker.pyNN.utilities.running_stats module
- spynnaker.pyNN.utilities.struct module
- spynnaker.pyNN.utilities.utility_calls module
check_directory_exists_and_create_if_not()
check_rng()
convert_param_to_numpy()
convert_to()
create_mars_kiss_seeds()
get_maximum_probable_value()
get_mean()
get_minimum_probable_value()
get_n_bits()
get_neo_io()
get_probability_within_range()
get_probable_maximum_selected()
get_probable_minimum_selected()
get_standard_deviation()
get_time_to_write_us()
get_variance()
high()
low()
read_in_data_from_file()
read_spikes_from_file()
report_non_spynnaker_pyNN()
- Module contents
Submodules¶
spynnaker.pyNN.config_setup module¶
- spynnaker.pyNN.config_setup.setup_configs()[source]¶
Sets up the configurations including the users configuration file.
Clears out any previous read configurations but does not load the new configurations so a warning is generated if a configuration is used before setup is called.
- spynnaker.pyNN.config_setup.unittest_setup()[source]¶
Does all the steps that may be required before a unit-test.
Resets the configurations so only the local default configurations are included. The user configuration is not included!
Unsets any previous simulators and temporary directories
Note
This file should only be called from sPyNNaker tests that do not call sim.setup
spynnaker.pyNN.exceptions module¶
- exception spynnaker.pyNN.exceptions.DelayExtensionException[source]¶
Bases:
ConfigurationException
Raised when a delay extension vertex fails.
- exception spynnaker.pyNN.exceptions.FilterableException[source]¶
Bases:
SpynnakerException
Raised when it is not possible to determine if an edge should be filtered.
- exception spynnaker.pyNN.exceptions.InvalidParameterType[source]¶
Bases:
SpynnakerException
Raised when a parameter is not recognised.
- exception spynnaker.pyNN.exceptions.MemReadException[source]¶
Bases:
SpynnakerException
Raised when the PyNN front end fails to read a certain memory region.
- exception spynnaker.pyNN.exceptions.SpynnakerException[source]¶
Bases:
Exception
Superclass of all exceptions from the PyNN module.
- exception spynnaker.pyNN.exceptions.SpynnakerSplitterConfigurationException[source]¶
Bases:
ConfigurationException
Raised when a splitter configuration fails.
- exception spynnaker.pyNN.exceptions.SynapseRowTooBigException(max_size, message)[source]¶
Bases:
SpynnakerException
Raised when a synapse row is bigger than is allowed.
- Parameters:
max_size – the maximum permitted size of row
message – the exception message
- property max_size¶
The maximum size allowed.
- exception spynnaker.pyNN.exceptions.SynapticBlockGenerationException[source]¶
Bases:
ConfigurationException
Raised when the synaptic manager fails to generate a synaptic block.
- exception spynnaker.pyNN.exceptions.SynapticBlockReadException[source]¶
Bases:
ConfigurationException
Raised when the synaptic manager fails to read a synaptic block or convert it into readable values.
- exception spynnaker.pyNN.exceptions.SynapticConfigurationException[source]¶
Bases:
ConfigurationException
Raised when the synaptic manager fails for some reason.
- exception spynnaker.pyNN.exceptions.SynapticMaxIncomingAtomsSupportException[source]¶
Bases:
ConfigurationException
Raised when a synaptic sublist exceeds the max atoms possible to be supported.
spynnaker.pyNN.random_distribution module¶
spynnaker.pyNN.setup_pynn module¶
This script installs sPyNNaker so that it usable as the pyNN.spiNNaker
module.
Note
This modifies your pyNN installation!
- spynnaker.pyNN.setup_pynn.install_sPyNNaker_into(module)[source]¶
Do the actual installation by creating a package within the given module’s implementation. This is very nasty!
- Parameters:
module (ModuleType) –
- spynnaker.pyNN.setup_pynn.version_satisfies(module, requirement)[source]¶
Perform a version check. This code could be smarter…
- Parameters:
module (ModuleType) –
requirement (str) –
- Returns:
Whether the module’s version satisfies the given requirement
- Return type:
spynnaker.pyNN.spinnaker module¶
spynnaker.pyNN.spynnaker_external_device_plugin_manager module¶
- class spynnaker.pyNN.spynnaker_external_device_plugin_manager.SpynnakerExternalDevicePluginManager[source]¶
Bases:
object
User-level interface for the external device plug-in manager.
- static activate_live_output_for(population, database_notify_host=None, database_notify_port_num=None, database_ack_port_num=None, port=None, host=None, tag=None, strip_sdp=True, use_prefix=False, key_prefix=None, prefix_type=None, message_type=EIEIOType.KEY_32_BIT, right_shift=0, payload_as_time_stamps=True, notify=True, use_payload_prefix=True, payload_prefix=None, payload_right_shift=0, number_of_packets_sent_per_time_step=0, translate_keys=False)[source]¶
Output the spikes from a given population from SpiNNaker as they occur in the simulation.
- Parameters:
population (Population) – The population to activate the live output for
database_notify_host (str) – The hostname for the device which is listening to the database notification.
database_ack_port_num (int) – The port number to which a external device will acknowledge that they have finished reading the database and are ready for it to start execution
database_notify_port_num (int) – The port number to which a external device will receive the database is ready command
key_prefix (int or None) – the prefix to be applied to the key
prefix_type (EIEIOPrefix) – if the prefix type is 32 bit or 16 bit
message_type (EIEIOType) – If the message is a EIEIO command message, or an EIEIO data message with 16 bit or 32 bit keys.
payload_as_time_stamps (bool) –
right_shift (int) –
use_payload_prefix (bool) –
notify (bool) –
payload_prefix (int or None) –
payload_right_shift (int) –
number_of_packets_sent_per_time_step (int) –
port (int) – The UDP port to which the live spikes will be sent. If not specified, the port will be taken from the “live_spike_port” parameter in the “Recording” section of the sPyNNaker configuration file.
host (str) – The host name or IP address to which the live spikes will be sent. If not specified, the host will be taken from the “live_spike_host” parameter in the “Recording” section of the sPyNNaker configuration file.
tag (int) – The IP tag to be used for the spikes. If not specified, one will be automatically assigned
strip_sdp (bool) – Determines if the SDP headers will be stripped from the transmitted packet.
use_prefix (bool) – Determines if the spike packet will contain a common prefix for the spikes
label (str) – The label of the gatherer vertex
partition_ids (list(str)) – The names of the partitions to create edges for
translate_keys (bool) – Whether the incoming keys from the cores should be translated to global keys rather than core-based keys
- static activate_live_output_to(population, device, partition_id='SPIKE')[source]¶
Activate the output of spikes from a population to an external device.
Note
All spikes will be sent to the device.
- Parameters:
population (Population) – The pyNN population object from which spikes will be sent.
device (Population or ApplicationVertex) – The pyNN population or external device to which the spikes will be sent.
partition_id (str) – The partition ID to activate live output to.
- static add_database_socket_address(database_notify_host, database_notify_port_num, database_ack_port_num)[source]¶
- Parameters:
database_notify_host (str or None) – Host to talk to tell that the database (and application) is ready.
database_notify_port_num (int or None) – Port to talk to tell that the database (and application) is ready.
database_ack_port_num (int or None) – Port on which to listen for an acknowledgement that the simulation should start.
- static add_edge(vertex, device_vertex, partition_id)[source]¶
Add an edge between two vertices (often a vertex and a external device) on a given partition.
- Parameters:
vertex (ApplicationVertex) – the pre-population vertex to connect the edge from
device_vertex (ApplicationVertex) – the post-population vertex to connect the edge to
partition_id (str) – the partition identifier for making nets
- static add_poisson_live_rate_control(poisson_population, control_label_extension='_control', receive_port=None, database_notify_host=None, database_notify_port_num=None, database_ack_port_num=None, notify=True, reserve_reverse_ip_tag=False)[source]¶
Add a live rate controller to a Poisson population.
- Parameters:
poisson_population (Population) – The population to control
control_label_extension (str) – An extension to add to the label of the Poisson source. Must match up with the equivalent in the SpynnakerPoissonControlConnection
receive_port (int) – The port that the SpiNNaker board should listen on
database_notify_host (str) – the hostname for the device which is listening to the database notification.
database_ack_port_num (int) – the port number to which a external device will acknowledge that they have finished reading the database and are ready for it to start execution
database_notify_port_num (int) – The port number to which an external device will receive the database is ready command
notify (bool) – adds to the notification protocol if set.
reserve_reverse_ip_tag (bool) – True if a reverse IP tag is to be used, False if SDP is to be used (default)
- static update_live_packet_gather_tracker(vertex_to_record_from, params, partition_ids)[source]¶
Add an edge from a vertex to the live packet gatherer, builds as needed and has all the parameters for the creation of the live packet gatherer if needed.
- Parameters:
vertex_to_record_from (ApplicationVertex or MachineVertex) –
params (LivePacketGatherParameters) –
translate_keys (bool) –
Module contents¶
The spynnaker.pyNN
package contains the front end specifications
and implementation for the PyNN High-level API
(https://neuralensemble.org/trac/PyNN).
This package contains the profile of that code for PyNN 0.9.
- class spynnaker.pyNN.ACSource(start=0.0, stop=0.0, amplitude=0.0, offset=0.0, frequency=0.0, phase=0.0)
Bases:
AbstractCurrentSource
AC current source (i.e. sine wave) turned on at “start” and off at “stop”, given (y-)offset, amplitude, frequency and phase.
- Parameters:
- property current_source_id
The ID of the current source.
- Return type:
- property get_parameter_types
The parameter types for the current source.
- set_parameters(**parameters)[source]
Set the current source parameters.
- Parameters:
parameters – the parameters to set
- spynnaker.pyNN.AdditiveWeightDependence
alias of
WeightDependenceAdditive
- class spynnaker.pyNN.AllToAllConnector(allow_self_connections=True, safe=True, verbose=None, callback=None)
Bases:
AbstractGenerateConnectorOnMachine
,AbstractGenerateConnectorOnHost
Connects all cells in the presynaptic population to all cells in the postsynaptic population.
- Parameters:
allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
safe (bool) – If
True
, check that weights and delays have valid values. IfFalse
, this check is skipped.verbose (bool) – Whether to output extra information about the connectivity to a CSV file
callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- property allow_self_connections
- Return type:
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- property gen_connector_id
The ID of the connection generator on the machine.
- Return type:
- gen_connector_params()[source]
Get the parameters of the on machine generation.
- Return type:
ndarray(uint32)
- property gen_connector_params_size_in_bytes
The size of the connector parameters, in bytes.
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- class spynnaker.pyNN.ArrayConnector(array, safe=True, callback=None, verbose=False)
Bases:
AbstractConnector
,AbstractGenerateConnectorOnHost
Make connections using an array of integers based on the IDs of the neurons in the pre- and post-populations.
- Parameters:
array (ndarray(2, uint8)) – An explicit boolean matrix that specifies the connections between the pre- and post-populations (see PyNN documentation). Must be 2D in practice.
safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- class spynnaker.pyNN.Assembly(*populations, **kwargs)
Bases:
Assembly
A group of neurons, may be heterogeneous, in contrast to a Population where all the neurons are of the same type.
- Parameters:
populations (Population or PopulationView) – the populations or views to form the assembly out of
kwargs – may contain label (a string describing the assembly)
Create an Assembly of Populations and/or PopulationViews.
- class spynnaker.pyNN.CSAConnector(cset, safe=True, callback=None, verbose=False)
Bases:
AbstractConnector
,AbstractGenerateConnectorOnHost
Make connections using a Connection Set Algebra (Djurfeldt 2012) description between the neurons in the pre- and post-populations.
Note
If you get TypeError in Python 3 see: https://github.com/INCF/csa/issues/10
- Parameters:
cset (csa.connset.CSet) – A description of the connection set between populations
safe (bool) – If
True
, check that weights and delays have valid values. IfFalse
, this check is skipped.callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- Raises:
ImportError – if the csa library isn’t present; it’s tricky to install in some environments so we don’t force it to be present unless you want to actually use this class.
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- spynnaker.pyNN.Convolution
alias of
LocalOnlyConvolution
- class spynnaker.pyNN.ConvolutionConnector(kernel_weights, kernel_shape=None, strides=None, padding=None, pool_shape=None, pool_stride=None, positive_receptor_type='excitatory', negative_receptor_type='inhibitory', safe=True, verbose=False, callback=None)
Bases:
AbstractConnector
Where the pre- and post-synaptic populations are considered as a 2D array. Connect every post(row, column) neuron to many pre(row, column, kernel) through a (kernel) set of weights and/or delays.
- Parameters:
kernel_weights (int or list or ndarray or RandomDistribution) –
The synaptic strengths, shared by neurons in the post population. Can be:
single value: kernel_shape must be provided; the same value will be used for all weights
simple list: kernel_shape must be provided; the list must be sized shape width * height
2D list: If kernel_shape is provided, it must match
ndarray
: As above for simple or 2D listRandomDistribution
: kernel_shape must be provided; weights will be drawn from the distribution
kernel_shape (int or tuple(int,int)) – The shape of the kernel if it cannot be determined from kernel_weights. If a single value is provided, a square kernel will be assumed. If two values are provided, it will be assumed to be (n_rows, n_columns)
strides (int or tuple(int, int)) – Spatial sampling frequency, jumps between the post neurons. This matches the meaning of standard ML packages. If a single value is provided, the same stride will be used for rows and columns. If two values are provided it will be assumed to be (stride_rows, stride_columns)
padding (bool or int or tuple(int, int) or None) – How many ‘extra pixels’ around the pre-population will be added, only zero-valued pixels are currently supported. If a single value is provided, the same padding will be used for rows and columns. If two values are provided it will be assumed to be (padding_rows, padding_columns). If True, automatic padding will be used based on the kernel shape. If False or None, no padding will be used.
pool_shape (int or tuple(int, int) or None) – Area of pooling, only average pooling is supported (and seems to make sense). If a single value is provided, the pooling area will be square. If two values are provided it will be assumed to be (pooling_rows, pooling_columns).
pool_stride (int or tuple(int, int) or None) – Jumps between pooling regions. If a single value is provided, the same stride will be used for rows and columns. If two values are provided it will be assumed to be (stride_rows, stride_columns)
positive_receptor_type (str) – The receptor type to add the positive weights to. By default this is “
excitatory
”.negative_receptor_type (str) – The receptor type to add the negative weights to. By default this is “
inhibitory
”.safe (bool) – (ignored)
verbose (bool) – (ignored)
callback (callable) – (ignored)
- get_connected_vertices(s_info, source_vertex, target_vertex)[source]
Get the machine vertices that are connected to each other with this connector
- Parameters:
s_info (SynapseInformation) – The synapse information of the connection
source_vertex (ApplicationVertex) – The source of the spikes
target_vertex (ApplicationVertex) – The target of the spikes
- Returns:
A list of tuples of (target machine vertex, list of sources)
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_encoded_kernel_weights(app_edge, weight_scales)[source]
- get_local_only_data(app_edge, vertex_slice, key, mask, n_colour_bits, delay, weight_index)[source]
- get_max_n_incoming_slices(source_vertex, target_vertex)[source]
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_post_shape(shape)[source]
Get the shape of the post image given the pre-image shape.
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- property kernel_n_bytes
- property kernel_n_weights
- property kernel_weights
- property negative_receptor_type
- property parameters_n_bytes
- property positive_receptor_type
- validate_connection(application_edge, synapse_info)[source]
Checks that the edge supports the connector. By default this does nothing i.e. assumes the edge is OK, but can be overridden if the connector has rules that need to be checked. Returns nothing; it is assumed that an Exception will be raised if anything is wrong.
- Parameters:
application_edge (ApplicationEdge) – The edge of the connection
synapse_info (SynapseInformation) – The synaptic information
- class spynnaker.pyNN.Cuboid(width, height, depth)[source]
Bases:
Shape
Represents a cuboidal volume within which neurons may be distributed.
- Arguments:
- height:
extent in y direction
- width:
extent in x direction
- depth:
extent in z direction
- sample(n, rng)[source]
Return n points distributed randomly with uniform density within the cuboid.
- class spynnaker.pyNN.DCSource(amplitude=0.0, start=0.0, stop=0.0)
Bases:
AbstractCurrentSource
Current source with amplitude turned on at “start” and off at “stop”.
- property current_source_id
The ID of the current source.
- Return type:
- property get_parameter_types
The parameter types for the current source.
- set_parameters(**parameters)[source]
Set the current source parameters.
- Parameters:
parameters – the parameters to set
- class spynnaker.pyNN.DistanceDependentFormation(grid=(16, 16), p_form_forward=0.16, sigma_form_forward=2.5, p_form_lateral=1.0, sigma_form_lateral=1.0)
Bases:
AbstractFormation
Formation rule that depends on the physical distance between neurons.
- Parameters:
grid (tuple(int,int) or list(int) or ndarray(int)) – (x, y) dimensions of the grid of distance
p_form_forward (float) – The peak probability of formation on feed-forward connections
sigma_form_forward (float) – The spread of probability with distance of formation on feed-forward connections
p_form_lateral (float) – The peak probability of formation on lateral connections
sigma_form_lateral (float) – The spread of probability with distance of formation on lateral connections
- distance(x0, x1, metric)[source]
Compute the distance between points x0 and x1 place on the grid using periodic boundary conditions.
- generate_distance_probability_array(probability, sigma)[source]
Generate the exponentially decaying probability LUTs.
- get_parameter_names()[source]
Return the names of the parameters supported by this rule.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes()[source]
Get the amount of SDRAM used by the parameters of this rule.
- Return type:
- property vertex_executable_suffix
The suffix to be appended to the vertex executable for this rule.
- Return type:
- write_parameters(spec)[source]
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator) –
- class spynnaker.pyNN.DistanceDependentProbabilityConnector(d_expression, allow_self_connections=True, safe=True, verbose=False, n_connections=None, rng=None, callback=None)
Bases:
AbstractConnector
,AbstractGenerateConnectorOnHost
Make connections using a distribution which varies with distance.
- Parameters:
d_expression (str) – the right-hand side of a valid python expression for probability, involving
d
, (e.g."exp(-abs(d))"
, or"d < 3"
), that can be parsed byeval()
, that computes the distance dependent distribution.allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
safe (bool) – if
True
, check that weights and delays have valid values. IfFalse
, this check is skipped.verbose (bool) – Whether to output extra information about the connectivity to a CSV file
n_connections (int or None) – The number of efferent synaptic connections per neuron.
rng (NumpyRNG or None) – Seeded random number generator, or
None
to make one when needed.callback (callable) –
- property allow_self_connections
- Return type:
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- property d_expression
The distance expression.
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- set_projection_information(synapse_info)[source]
Sets a connectors projection info.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- class spynnaker.pyNN.FixedNumberPostConnector(n, allow_self_connections=True, safe=True, verbose=False, with_replacement=False, rng=None, callback=None)
Bases:
AbstractGenerateConnectorOnMachine
,AbstractGenerateConnectorOnHost
Connects a fixed number of post-synaptic neurons selected at random, to all pre-synaptic neurons.
- Parameters:
n (int) – number of random post-synaptic neurons connected to pre-neurons.
allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
safe (bool) – Whether to check that weights and delays have valid values; if
False
, this check is skipped.verbose (bool) – Whether to output extra information about the connectivity to a CSV file
with_replacement (bool) – this flag determines how the random selection of post-synaptic neurons is performed; if
True
, then every post-synaptic neuron can be chosen on each occasion, and so multiple connections between neuron pairs are possible; ifFalse
, then once a post-synaptic neuron has been connected to a pre-neuron, it can’t be connected again.rng (NumpyRNG or None) – Seeded random number generator, or
None
to make one when needed.callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- property allow_self_connections
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- property gen_connector_id
The ID of the connection generator on the machine.
- Return type:
- gen_connector_params()[source]
Get the parameters of the on machine generation.
- Return type:
ndarray(uint32)
- property gen_connector_params_size_in_bytes
The size of the connector parameters, in bytes.
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- set_projection_information(synapse_info)[source]
Sets a connectors projection info.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- validate_connection(application_edge, synapse_info)[source]
Checks that the edge supports the connector. By default this does nothing i.e. assumes the edge is OK, but can be overridden if the connector has rules that need to be checked. Returns nothing; it is assumed that an Exception will be raised if anything is wrong.
- Parameters:
application_edge (ApplicationEdge) – The edge of the connection
synapse_info (SynapseInformation) – The synaptic information
- class spynnaker.pyNN.FixedNumberPreConnector(n, allow_self_connections=True, safe=True, verbose=False, with_replacement=False, rng=None, callback=None)
Bases:
AbstractGenerateConnectorOnMachine
,AbstractGenerateConnectorOnHost
Connects a fixed number of pre-synaptic neurons selected at random, to all post-synaptic neurons.
- Parameters:
n (int) – number of random pre-synaptic neurons connected to output
allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
safe (bool) – Whether to check that weights and delays have valid values. If
False
, this check is skipped.verbose (bool) – Whether to output extra information about the connectivity to a CSV file
with_replacement (bool) – this flag determines how the random selection of pre-synaptic neurons is performed; if true, then every pre-synaptic neuron can be chosen on each occasion, and so multiple connections between neuron pairs are possible; if false, then once a pre-synaptic neuron has been connected to a post-neuron, it can’t be connected again.
rng (NumpyRNG or None) – Seeded random number generator, or None to make one when needed
callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- property allow_self_connections
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- property gen_connector_id
The ID of the connection generator on the machine.
- Return type:
- gen_connector_params()[source]
Get the parameters of the on machine generation.
- Return type:
ndarray(uint32)
- property gen_connector_params_size_in_bytes
The size of the connector parameters, in bytes.
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- set_projection_information(synapse_info)[source]
Sets a connectors projection info.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- validate_connection(application_edge, synapse_info)[source]
Checks that the edge supports the connector. By default this does nothing i.e. assumes the edge is OK, but can be overridden if the connector has rules that need to be checked. Returns nothing; it is assumed that an Exception will be raised if anything is wrong.
- Parameters:
application_edge (ApplicationEdge) – The edge of the connection
synapse_info (SynapseInformation) – The synaptic information
- class spynnaker.pyNN.FixedProbabilityConnector(p_connect, allow_self_connections=True, safe=True, verbose=False, rng=None, callback=None)
Bases:
AbstractGenerateConnectorOnMachine
,AbstractGenerateConnectorOnHost
For each pair of pre-post cells, the connection probability is constant.
- Parameters:
p_connect (float) – a value between zero and one. Each potential connection is created with this probability.
allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
safe (bool) – If
True
, check that weights and delays have valid values. IfFalse
, this check is skipped.verbose (bool) – Whether to output extra information about the connectivity to a CSV file
rng (NumpyRNG or None) – Seeded random number generator, or None to make one when needed
callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- property gen_connector_id
The ID of the connection generator on the machine.
- Return type:
- gen_connector_params()[source]
Get the parameters of the on machine generation.
- Return type:
ndarray(uint32)
- property gen_connector_params_size_in_bytes
The size of the connector parameters, in bytes.
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- property p_connect
- validate_connection(application_edge, synapse_info)[source]
Checks that the edge supports the connector. By default this does nothing i.e. assumes the edge is OK, but can be overridden if the connector has rules that need to be checked. Returns nothing; it is assumed that an Exception will be raised if anything is wrong.
- Parameters:
application_edge (ApplicationEdge) – The edge of the connection
synapse_info (SynapseInformation) – The synaptic information
- spynnaker.pyNN.FixedTotalNumberConnector
alias of
MultapseConnector
- class spynnaker.pyNN.FromFileConnector(file, distributed=False, safe=True, callback=None, verbose=False)
Bases:
FromListConnector
Make connections according to a list read from a file.
- Parameters:
Either an open file object or the filename of a file containing a list of connections, in the format required by
FromListConnector
. Column headers, if included in the file, must be specified using a list or tuple, e.g.:# columns = ["i", "j", "weight", "delay", "U", "tau_rec"]
Note
The header requires # at the beginning of the line.
distributed (bool) –
Basic pyNN says:
if this is
True
, then each node will read connections from a file calledfilename.x
, wherex
is the MPI rank. This speeds up loading connections for distributed simulations.Note
Always leave this as
False
with sPyNNaker, which is not MPI-based.safe (bool) – Whether to check that weights and delays have valid values. If
False
, this check is skipped.callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- get_reader(file)[source]
Get a file reader object using the PyNN methods.
- Returns:
A pynn StandardTextFile or similar
- Return type:
StandardTextFile
- class spynnaker.pyNN.FromListConnector(conn_list, safe=True, verbose=False, column_names=None, callback=None)
Bases:
AbstractConnector
,AbstractGenerateConnectorOnHost
Make connections according to a list.
- Parameters:
conn_list (ndarray or list(tuple(int,int,...))) –
A numpy array or a list of tuples, one tuple for each connection. Each tuple should contain:
(pre_idx, post_idx, p1, p2, ..., pn)
where
pre_idx
is the index (i.e. order in the Population, not the ID) of the presynaptic neuron,post_idx
is the index of the postsynaptic neuron, andp1
,p2
, etc. are the synaptic parameters (e.g., weight, delay, plasticity parameters). All tuples/rows must have the same number of items.safe (bool) – if
True
, check that weights and delays have valid values. IfFalse
, this check is skipped.verbose (bool) – Whether to output extra information about the connectivity to a CSV file
column_names (None or tuple(str) or list(str)) – the names of the parameters
p1
,p2
, etc. If not provided, it is assumed the parameters areweight, delay
(for backwards compatibility).callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- property column_names
The names of the columns in the array after the first two. Of particular interest is whether
weight
anddelay
columns are present.
- property conn_list
The connection list.
- Return type:
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- get_connected_vertices(s_info, source_vertex, target_vertex)[source]
Get the machine vertices that are connected to each other with this connector
- Parameters:
s_info (SynapseInformation) – The synapse information of the connection
source_vertex (ApplicationVertex) – The source of the spikes
target_vertex (ApplicationVertex) – The target of the spikes
- Returns:
A list of tuples of (target machine vertex, list of sources)
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_delay_variance(delays, synapse_info)[source]
Get the variance of the delays.
- get_extra_parameters()[source]
Getter for the extra parameters. Excludes
weight
anddelay
columns.- Returns:
The extra parameters
- Return type:
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_mean(weights, synapse_info)[source]
Get the mean of the weights.
- Parameters:
weights (RandomDistribution or int or float or str) –
- Return type:
- class spynnaker.pyNN.Grid2D(aspect_ratio=1.0, dx=1.0, dy=1.0, x0=0.0, y0=0.0, z=0, fill_order='sequential', rng=None)[source]
Bases:
BaseStructure
Represents a structure with neurons distributed on a 2D grid.
- Arguments:
- dx, dy:
distances between points in the x, y directions.
- x0, y0:
coordinates of the starting corner of the grid.
- z:
the z-coordinate of all points in the grid.
- aspect_ratio:
ratio of the number of grid points per side (not the ratio of the side lengths, unless
dx == dy
)- fill_order:
may be ‘sequential’ or ‘random’
- calculate_size(n)[source]
docstring goes here
- generate_positions(n)[source]
Calculate and return the positions of n neurons positioned according to this structure.
- parameter_names = ('aspect_ratio', 'dx', 'dy', 'x0', 'y0', 'z', 'fill_order')
- class spynnaker.pyNN.Grid3D(aspect_ratioXY=1.0, aspect_ratioXZ=1.0, dx=1.0, dy=1.0, dz=1.0, x0=0.0, y0=0.0, z0=0, fill_order='sequential', rng=None)[source]
Bases:
BaseStructure
Represents a structure with neurons distributed on a 3D grid.
- Arguments:
- dx, dy, dz:
distances between points in the x, y, z directions.
- x0, y0. z0:
coordinates of the starting corner of the grid.
- aspect_ratioXY, aspect_ratioXZ:
ratios of the number of grid points per side (not the ratio of the side lengths, unless
dx == dy == dz
)- fill_order:
may be ‘sequential’ or ‘random’.
If fill_order is ‘sequential’, the z-index will be filled first, then y then x, i.e. the first cell will be at (0,0,0) (given default values for the other arguments), the second at (0,0,1), etc.
- calculate_size(n)[source]
docstring goes here
- generate_positions(n)[source]
Calculate and return the positions of n neurons positioned according to this structure.
- parameter_names = ('aspect_ratios', 'dx', 'dy', 'dz', 'x0', 'y0', 'z0', 'fill_order')
- spynnaker.pyNN.IF_cond_exp
alias of
IFCondExpBase
- spynnaker.pyNN.IF_curr_alpha
alias of
IFCurrAlpha
- spynnaker.pyNN.IF_curr_delta
alias of
IFCurrDelta
- spynnaker.pyNN.IF_curr_exp
alias of
IFCurrExpBase
- class spynnaker.pyNN.IndexBasedProbabilityConnector(index_expression, allow_self_connections=True, rng=None, safe=True, callback=None, verbose=False)
Bases:
AbstractConnector
,AbstractGenerateConnectorOnHost
Make connections using a probability distribution which varies dependent upon the indices of the pre- and post-populations.
- Parameters:
index_expression (str) – the right-hand side of a valid python expression for probability, involving the indices of the pre- and post-populations, that can be parsed by eval(), that computes a probability distribution; the indices will be given as variables
i
andj
when the expression is evaluated.allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
rng (NumpyRNG or None) – Seeded random number generator, or
None
to make one when needed.safe (bool) – Whether to check that weights and delays have valid values. If
False
, this check is skipped.callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- property allow_self_connections
When the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- Return type:
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- property index_expression
The right-hand side of a valid python expression for probability, involving the indices of the pre- and post-populations, that can be parsed by eval(), that computes a probability distribution.
- Return type:
- spynnaker.pyNN.Izhikevich
alias of
IzkCurrExpBase
- class spynnaker.pyNN.KernelConnector(shape_pre, shape_post, shape_kernel, weight_kernel=None, delay_kernel=None, shape_common=None, pre_sample_steps_in_post=None, pre_start_coords_in_post=None, post_sample_steps_in_pre=None, post_start_coords_in_pre=None, safe=True, space=None, verbose=False, callback=None)
Bases:
AbstractGenerateConnectorOnMachine
,AbstractGenerateConnectorOnHost
Where the pre- and post-synaptic populations are considered as a 2D array. Connect every post(row, column) neuron to many pre(row, column, kernel) through a (kernel) set of weights and/or delays.
TODO
Should these include allow_self_connections and with_replacement?
- Parameters:
shape_pre (list(int) or tuple(int,int)) – 2D shape of the pre-population (rows/height, columns/width, usually the input image shape)
shape_post (list(int) or tuple(int,int)) – 2D shape of the post-population (rows/height, columns/width)
shape_kernel (list(int) or tuple(int,int)) – 2D shape of the kernel (rows/height, columns/width)
weight_kernel (ndarray or RandomDistribution or int or float or list(int) or list(float) or None) – (optional) 2D matrix of size shape_kernel describing the weights
delay_kernel (ndarray or RandomDistribution or int or float or list(int) or list(float) or None) – (optional) 2D matrix of size shape_kernel describing the delays
shape_common (list(int) or tuple(int,int) or None) – (optional) 2D shape of common coordinate system (for both pre- and post-, usually the input image sizes)
pre_sample_steps_in_post (None or list(int) or tuple(int,int)) – (optional) Sampling steps/jumps for pre-population <=> (stepX, stepY)
pre_start_coords_in_post (None or list(int) or tuple(int,int)) – (optional) Starting row/column for pre-population sampling <=> (offX, offY)
post_sample_steps_in_pre (None or list(int) or tuple(int,int)) – (optional) Sampling steps/jumps for post-population <=> (stepX, stepY)
post_start_coords_in_pre (None or list(int) or tuple(int,int)) – (optional) Starting row/column for post-population sampling <=> (offX, offY)
safe (bool) – Whether to check that weights and delays have valid values. If
False
, this check is skipped.space (Space) – Currently ignored; for future compatibility.
verbose (bool) – Whether to output extra information about the connectivity to a CSV file
callback (callable) – (ignored)
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- property gen_connector_id
The ID of the connection generator on the machine.
- Return type:
- gen_connector_params()[source]
Get the parameters of the on machine generation.
- Return type:
ndarray(uint32)
- property gen_connector_params_size_in_bytes
The size of the connector parameters, in bytes.
- Return type:
- get_connected_vertices(s_info, source_vertex, target_vertex)[source]
Get the machine vertices that are connected to each other with this connector
- Parameters:
s_info (SynapseInformation) – The synapse information of the connection
source_vertex (ApplicationVertex) – The source of the spikes
target_vertex (ApplicationVertex) – The target of the spikes
- Returns:
A list of tuples of (target machine vertex, list of sources)
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_delay_variance(delays, synapse_info)[source]
Get the variance of the delays.
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_mean(weights, synapse_info)[source]
Get the mean of the weights.
- Parameters:
weights (RandomDistribution or int or float or str) –
- Return type:
- class spynnaker.pyNN.LastNeuronSelection(spike_buffer_size=64)
Bases:
AbstractPartnerSelection
Partner selection that picks a random source neuron from the neurons that spiked in the last timestep.
- Parameters:
spike_buffer_size – The size of the buffer for holding spikes
- get_parameter_names()[source]
Return the names of the parameters supported by this rule.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes()[source]
Get the amount of SDRAM used by the parameters of this rule.
- Return type:
- property vertex_executable_suffix
The suffix to be appended to the vertex executable for this rule.
- Return type:
- write_parameters(spec)[source]
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator) –
- class spynnaker.pyNN.Line(dx=1.0, x0=0.0, y=0.0, z=0.0)[source]
Bases:
BaseStructure
Represents a structure with neurons distributed evenly on a straight line.
- Arguments:
- dx:
distance between points in the line.
- y, z,:
y- and z-coordinates of all points in the line.
- x0:
x-coordinate of the first point in the line.
- generate_positions(n)[source]
Calculate and return the positions of n neurons positioned according to this structure.
- parameter_names = ('dx', 'x0', 'y', 'z')
- spynnaker.pyNN.MultiplicativeWeightDependence
alias of
WeightDependenceMultiplicative
- class spynnaker.pyNN.NoisyCurrentSource(mean=0.0, stdev=0.0, start=0.0, stop=0.0, dt=1.0, rng=None)
Bases:
AbstractCurrentSource
A noisy current source beginning at “start” and ending at “stop”, with noise simulated based on the given mean and standard deviation, and updating every dt (dt should default to the machine time step).
- property current_source_id
The ID of the current source.
- Return type:
- property get_parameter_types
The parameter types for the current source.
- set_parameters(**parameters)[source]
Set the current source parameters.
- Parameters:
parameters – the parameters to set
- class spynnaker.pyNN.NumpyRNG(seed=None, parallel_safe=True)[source]
Bases:
WrappedRNG
Wrapper for the
np.random.RandomState
class (Mersenne Twister PRNG).- normal_clipped(mu=0.0, sigma=1.0, low=-inf, high=inf, size=None)[source]
- normal_clipped_to_boundary(mu=0.0, sigma=1.0, low=-inf, high=inf, size=None)[source]
- translations = {'binomial': ('binomial', {'n': 'n', 'p': 'p'}), 'exponential': ('exponential', {'beta': 'scale'}), 'gamma': ('gamma', {'k': 'shape', 'theta': 'scale'}), 'lognormal': ('lognormal', {'mu': 'mean', 'sigma': 'sigma'}), 'normal': ('normal', {'mu': 'loc', 'sigma': 'scale'}), 'normal_clipped': ('normal_clipped', {'high': 'high', 'low': 'low', 'mu': 'mu', 'sigma': 'sigma'}), 'normal_clipped_to_boundary': ('normal_clipped_to_boundary', {'high': 'high', 'low': 'low', 'mu': 'mu', 'sigma': 'sigma'}), 'poisson': ('poisson', {'lambda_': 'lam'}), 'uniform': ('uniform', {'high': 'high', 'low': 'low'}), 'uniform_int': ('randint', {'high': 'high', 'low': 'low'}), 'vonmises': ('vonmises', {'kappa': 'kappa', 'mu': 'mu'})}
- class spynnaker.pyNN.OneToOneConnector(safe=True, callback=None, verbose=False)
Bases:
AbstractGenerateConnectorOnMachine
,AbstractGenerateConnectorOnHost
Where the pre- and postsynaptic populations have the same size, connect cell i in the presynaptic population to cell i in the postsynaptic population, for all i.
- Parameters:
safe (bool) – If
True
, check that weights and delays have valid values. IfFalse
, this check is skipped.callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- property gen_connector_id
The ID of the connection generator on the machine.
- Return type:
- gen_connector_params()[source]
Get the parameters of the on machine generation.
- Return type:
ndarray(uint32)
- property gen_connector_params_size_in_bytes
The size of the connector parameters, in bytes.
- Return type:
- get_connected_vertices(s_info, source_vertex, target_vertex)[source]
Get the machine vertices that are connected to each other with this connector
- Parameters:
s_info (SynapseInformation) – The synapse information of the connection
source_vertex (ApplicationVertex) – The source of the spikes
target_vertex (ApplicationVertex) – The target of the spikes
- Returns:
A list of tuples of (target machine vertex, list of sources)
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- use_direct_matrix(synapse_info)[source]
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- spynnaker.pyNN.PoolDense
alias of
LocalOnlyPoolDense
- class spynnaker.pyNN.PoolDenseConnector(weights, pool_shape=None, pool_stride=None, positive_receptor_type='excitatory', negative_receptor_type='inhibitory', safe=True, verbose=False, callback=None)
Bases:
AbstractConnector
Where the pre- and post-synaptic populations are considered as a 2D array. Connect every post(row, column) neuron to many pre(row, column, kernel) through a (kernel) set of weights and/or delays.
- Parameters:
weights (int or float or list(int or float) or ndarray or RandomDistribution) –
The synaptic strengths. Can be:
pool_shape (int or tuple(int) or None) – Shape of average pooling. If a single value is provided, it will be used for every dimension, otherwise must be the same number of values as there are dimensions in the source.
pool_stride (int or tuple(int) or None) – Jumps between pooling regions. If a single value is provided, the same stride will be used for all dimensions, otherwise must be the same number of values as there are dimensions in the source. If None, and pool_shape is provided, pool_stride will be set to pool_shape.
positive_receptor_type (str) – The receptor type to add the positive weights to. By default this is “excitatory”.
negative_receptor_type (str) – The receptor type to add the negative weights to. By default this is “inhibitory”.
safe (bool) – (ignored)
verbose (bool) – (ignored)
callback (callable) – (ignored)
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- static get_post_pool_shape(pre_shape, pool_shape=None, pool_stride=None)[source]
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- local_only_n_bytes(incoming_slices, n_post_atoms)[source]
- property negative_receptor_type
- Return type:
- property positive_receptor_type
- Return type:
- validate_connection(application_edge, synapse_info)[source]
Checks that the edge supports the connector. By default this does nothing i.e. assumes the edge is OK, but can be overridden if the connector has rules that need to be checked. Returns nothing; it is assumed that an Exception will be raised if anything is wrong.
- Parameters:
application_edge (ApplicationEdge) – The edge of the connection
synapse_info (SynapseInformation) – The synaptic information
- property weights
- Return type:
- write_local_only_data(spec, app_edge, pre_vertex_slice, post_vertex_slice, key, mask, n_colour_bits, weight_scales)[source]
- class spynnaker.pyNN.Population(size, cellclass, cellparams=None, structure=None, initial_values=None, label=None, additional_parameters=None, **additional_kwargs)
Bases:
PopulationBase
PyNN 0.9 population object.
- Parameters:
size (int) – The number of neurons in the population
cellclass (type or AbstractPyNNModel) – The implementation of the individual neurons.
cellparams (dict(str,object) or None) – Parameters to pass to
cellclass
if it is a class to instantiate. Must beNone
ifcellclass
is an instantiated object.structure (BaseStructure) –
initial_values (dict(str,float)) – Initial values of state variables
label (str) – A label for the population
additional_parameters (dict(str, ...)) – Additional parameters to pass to the vertex creation function.
additional_kwargs (dict(str, ...)) – A nicer way of allowing additional things
- add_placement_constraint(x, y, p=None)[source]
Add a placement constraint.
- Parameters:
- Raises:
SimulatorRunningException – If sim.run is currently running
SimulatorNotSetupException – If called before sim.setup
SimulatorShutdownException – If called after sim.end
- can_record(variable)[source]
Determine whether variable can be recorded from this population.
- property celltype
Implements the PyNN expected celltype property.
- Returns:
The cell type this property has been set to
- Return type:
- property conductance_based
Whether the population uses conductance inputs
- Return type:
- static create(cellclass, cellparams=None, n=1)[source]
Pass through method to the constructor defined by PyNN. Create
n
cells all of the same type.- Parameters:
- Returns:
A New Population
- Return type:
- property current_values
Get the current values of the state variables.
- Return type:
- describe(template='population_default.txt', engine='default')[source]
Returns a human-readable description of the population.
The output may be customized by specifying a different template together with an associated template engine (see
pyNN.descriptions
).If
template
isNone
, then a dictionary containing the template context will be returned.
- find_units(variable)[source]
Get the units of a variable.
- property first_id
The ID of the first member of the population.
- Return type:
- get(parameter_names, gather=True, simplify=True)[source]
Get the values of a parameter for every local cell in the population.
- Parameters:
- Returns:
A single list of values (or possibly a single value) if paramter_names is a string, or a dict of these if parameter names is a list.
- Return type:
- get_data(variables='all', gather=True, clear=False, annotations=None)[source]
Return a Neo Block containing the data (spikes, state variables) recorded from the Assembly.
- Parameters:
variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
gather (bool) –
Whether to collect data from all MPI nodes or just the current node.
Note
This is irrelevant on sPyNNaker, which always behaves as if this parameter is True.
clear (bool) – Whether recorded data will be deleted from the
Assembly
.annotations (dict(str, ...)) – annotations to put on the neo block
- Return type:
- Raises:
ConfigurationException – If the variable or variables have not been previously set to record.
- get_spike_counts(gather=True)[source]
Return the number of spikes for each neuron.
- Return type:
- id_to_index(id)[source]
Given the ID(s) of cell(s) in the Population, return its (their) index (order in the Population).
Defined by https://neuralensemble.org/docs/PyNN/reference/populations.html
- id_to_local_index(cell_id)[source]
Given the ID(s) of cell(s) in the Population, return its (their) index (order in the Population), counting only cells on the local MPI node.
Defined by https://neuralensemble.org/docs/PyNN/reference/populations.html
- index_to_id(index)[source]
Given the index (order in the Population) of cell(s) in the Population, return their ID(s)
- property initial_values
The initial values of the state variables.
Note
These values will be the same as the values set with the last call to initialize rather than the actual initial values if this call has been made.
- Return type:
- initialize(**kwargs)[source]
Set initial values of state variables, e.g. the membrane potential. Values passed to
initialize()
may be:single numeric values (all neurons set to the same value), or
RandomDistribution
objects, orlists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.initialize(v=-70.0) p.initialize(v=rand_distr, gsyn_exc=0.0) p.initialize(v=lambda i: -65 + i / 10.0)
- inject(current_source)[source]
Connect a current source to all cells in the Population.
Defined by https://neuralensemble.org/docs/PyNN/reference/populations.html
- property label
The label of the population.
- Return type:
- property last_id
The ID of the last member of the population.
- Return type:
- property local_size
The number of local cells.
Defined by https://neuralensemble.org/docs/PyNN/reference/populations.html
- property positions
The position array for structured populations.
- Returns:
a 3xN array
- Return type:
- record(variables, to_file=None, sampling_interval=None)[source]
Record the specified variable or variables for all cells in the Population or view.
- Parameters:
variables (str or list(str)) – either a single variable name or a list of variable names. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.
to_file (io or rawio or str) – a file to automatically record to (optional).
write_data()
will be automatically called when sim.end() is called.sampling_interval (int) – a value in milliseconds, and an integer multiple of the simulation timestep.
- sample(n, rng=None)[source]
Randomly sample n cells from the Population, and return a PopulationView object.
- Parameters:
- Return type:
- set(**parameters)[source]
Set one or more parameters for every cell in the population.
parameter
can be a dict, in which casevalue
should not be supplied, or a string giving the parameter name, in which casevalue
is the parameter value.value
can be a numeric value, or list of such (e.g. for setting spike times):p._set("tau_m", 20.0). p._set({'tau_m':20, 'v_rest':-65})
- Parameters:
- Raises:
SimulatorRunningException – If sim.run is currently running
SimulatorNotSetupException – If called before sim.setup
SimulatorShutdownException – If called after sim.end
- set_max_atoms_per_core(max_atoms_per_core)[source]
Supports the setting of this population’s max atoms per dimension per core.
- Parameters:
max_atoms_per_core (int) – the new value for the max atoms per dimension per core.
- Raises:
SimulatorRunningException – If sim.run is currently running
SimulatorNotSetupException – If called before sim.setup
SimulatorShutdownException – If called after sim.end
- set_state(**kwargs)[source]
Set current values of state variables, e.g. the membrane potential. Values passed to
set_state()
may be:single numeric values (all neurons set to the same value), or
RandomDistribution
objects, orlists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.set_state(v=-70.0) p.set_state(v=rand_distr, gsyn_exc=0.0) p.set_state(v=lambda i: -65 + i / 10.0)
- property size
The number of neurons in the population.
- Return type:
- spinnaker_get_data(variable, as_matrix=False, view_indexes=None)[source]
Public accessor for getting data as a numpy array, instead of the Neo-based object
- property structure
The structure for the population.
- Return type:
BaseStructure or None
- write_data(io, variables='all', gather=True, clear=False, annotations=None)[source]
Write recorded data to file, using one of the file formats supported by Neo.
- Parameters:
io (neo.io.baseio.BaseIO or str) – a Neo IO instance, or a string for where to put a neo instance
variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
gather (bool) –
Whether to bring all relevant data together.
Note
SpiNNaker always gathers.
clear (bool) – clears the storage data if set to true after reading it back
annotations (dict(str, ...)) – annotations to put on the neo block
- Raises:
ConfigurationException – If the variable or variables have not been previously set to record.
- class spynnaker.pyNN.PopulationView(parent, selector, label=None)
Bases:
PopulationBase
A view of a subset of neurons within a
Population
.In most ways, Populations and PopulationViews have the same behaviour, i.e., they can be recorded, connected with Projections, etc. It should be noted that any changes to neurons in a PopulationView will be reflected in the parent Population and vice versa.
It is possible to have views of views.
Note
Selector to Id is actually handled by
AbstractSized
.- Parameters:
parent (Population or PopulationView) – the population or view to make the view from
vertex (PopulationApplicationVertex) – The actual underlying vertex
recorder (Recorder) – The recorder of the Population
selector (None or slice or int or list(bool) or list(int) or ndarray(bool) or ndarray(int)) –
a slice or numpy mask array. The mask array should either be a boolean array (ideally) of the same size as the parent, or an integer array containing cell indices, i.e. if p.size == 5 then:
PopulationView(p, array([False, False, True, False, True])) PopulationView(p, array([2, 4])) PopulationView(p, slice(2, 5, 2))
will all create the same view.
label (str) – A label for the view
- property all_cells
An array containing the cell IDs of all neurons in the Population (all MPI nodes).
- can_record(variable)[source]
Determine whether variable can be recorded from this population.
- Return type:
- property celltype
The type of neurons making up the underlying Population.
- Return type:
- property conductance_based
Whether the post-synaptic response is modelled as a change in conductance or a change in current.
- Return type:
- property current_values
A dict containing the current values of the state variables.
- Return type:
InitialValuesHolder
- describe(template='populationview_default.txt', engine='default')[source]
Returns a human-readable description of the population view.
The output may be customized by specifying a different template together with an associated template engine (see pyNN.descriptions).
If template is
None
, then a dictionary containing the template context will be returned.
- find_units(variable)[source]
Get the units of a variable
Warning
No PyNN description of this method.
- get(parameter_names, gather=False, simplify=True)[source]
Get the values of the given parameters for every local cell in the population, or, if
gather=True
, for all cells in the population.Values will be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Note
SpiNNaker always gathers.
- get_data(variables='all', gather=True, clear=False, annotations=None)[source]
Return a Neo Block containing the data(spikes, state variables) recorded from the Population.
- Parameters:
variables (str or list(str)) – Either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
gather (bool) –
For parallel simulators, if gather is True, all data will be gathered to all nodes and the Neo Block will contain data from all nodes. Otherwise, the Neo Block will contain only data from the cells simulated on the local node.
Note
SpiNNaker always gathers.
clear (bool) – If True, recorded data will be deleted from the Population.
annotations (dict(str, ...)) – annotations to put on the neo block
- Return type:
- Raises:
ConfigurationException – If the variable or variables have not been previously set to record.
- get_spike_counts(gather=True)[source]
Returns a dict containing the number of spikes for each neuron.
The dict keys are neuron IDs, not indices.
Note
Implementation of this method is different to Population as the Populations uses PyNN 7 version of the
get_spikes
method which does not support indexes.
- property grandparent
The parent Population at the root of the tree (since the immediate parent may itself be a PopulationView).
The name “grandparent” is of course a little misleading, as it could be just the parent, or the great, great, great, …, grandparent.
- Return type:
- id_to_index(id)[source]
Given the ID(s) of cell(s) in the PopulationView, return its / their index / indices(order in the PopulationView).
assert pv.id_to_index(pv[3]) == 3
- index_in_grandparent(indices)[source]
Given an array of indices, return the indices in the parent population at the root of the tree.
- property initial_values
A dict containing the initial values of the state variables.
- Return type:
InitialValuesHolder
- initialize(**initial_values)[source]
Set initial values of state variables, e.g. the membrane potential. Values passed to
initialize()
may be:single numeric values (all neurons set to the same value), or
RandomDistribution
objects, orlists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, events per second).
Examples:
p.initialize(v=-70.0) p.initialize(v=rand_distr, gsyn_exc=0.0) p.initialize(v=lambda i: -65 + i / 10.0)
- inject(current_source)[source]
Injects the specified current_source into this PopulationView.
- Parameters:
current_source (AbstractCurrentSource) – the current source to be injected
- property label
A label for the Population View.
- Return type:
- property mask
The selector mask that was used to create this view.
- property parent
A reference to the parent Population (that this is a view of).
- Return type:
- record(variables, to_file=None, sampling_interval=None)[source]
Record the specified variable or variables for all cells in the Population or view.
- Parameters:
variables (str or list(str)) – either a single variable name, or a list of variable names, or
all
to record everything. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.to_file (io or rawio or str) – If specified, should be a Neo IO instance and
write_data()
will be automatically called when sim.end() is called.sampling_interval (int) – should be a value in milliseconds, and an integer multiple of the simulation timestep.
- sample(n, rng=None)[source]
Randomly sample n cells from the Population view, and return a new PopulationView object.
- Parameters:
- Return type:
- set(**parameters)[source]
Set one or more parameters for every cell in the population. Values passed to set() may be:
single values,
RandomDistribution
objects, orlists / arrays of values of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single value.
Here, a “single value” may be either a single number or a list / array of numbers (e.g. for spike times).
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.set(tau_m=20.0, v_rest=-65). p.set(spike_times=[0.3, 0.7, 0.9, 1.4]) p.set(cm=rand_distr, tau_m=lambda i: 10 + i / 10.0)
- set_state(**initial_values)[source]
Set current values of state variables, e.g. the membrane potential. Values passed to
initialize()
may be:single numeric values (all neurons set to the same value), or
RandomDistribution
objects, orlists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, events per second).
Examples:
p.set_state(v=-70.0) p.set_state(v=rand_distr, gsyn_exc=0.0) p.set_state(v=lambda i: -65 + i / 10.0)
- property size
The total number of neurons in the Population View.
- Return type:
- spinnaker_get_data(variable, as_matrix=False)[source]
Public accessor for getting data as a numpy array, instead of the Neo-based object
- spinnaker_get_spikes()[source]
Public accessor for getting spikes as a numpy array, instead of the Neo-based object
- write_data(io, variables='all', gather=True, clear=False, annotations=None)[source]
Write recorded data to file, using one of the file formats supported by Neo.
- Parameters:
io (neo.io.BaseIO or str) – a Neo IO instance or the name of a file to write
variables (str or list(str)) – either a single variable name or a list of variable names. These must have been previously recorded, otherwise an Exception will be raised.
gather (bool) –
For parallel simulators, if this is True, all data will be gathered to the master node and a single output file created there. Otherwise, a file will be written on each node, containing only data from the cells simulated on that node.
Note
SpiNNaker always gathers.
clear (bool) – If this is True, recorded data will be deleted from the Population.
annotations (dict(str, ...)) – should be a dict containing simple data types such as numbers and strings. The contents will be written into the output data file as metadata.
- Raises:
ConfigurationException – If the variable or variables have not been previously set to record.
- spynnaker.pyNN.Projection(presynaptic_population, postsynaptic_population, connector, synapse_type=None, source=None, receptor_type='excitatory', space=None, label=None)[source]
Used to support PEP 8 spelling correctly.
- Parameters:
presynaptic_population (Population) – the source pop
postsynaptic_population (Population) – the destination population
connector (AbstractConnector) – the connector type
synapse_type (AbstractStaticSynapseDynamics) – the synapse type
source (None) – Unsupported; must be
None
receptor_type (str) – the receptor type
space (Space or None) – the space object
label (str or None) – the label
- Returns:
a projection object for SpiNNaker
- Return type:
- class spynnaker.pyNN.RandomByWeightElimination(threshold, prob_elim_depressed=0.0245, prob_elim_potentiated=0.00013600000000000003)
Bases:
AbstractElimination
Elimination Rule that depends on the weight of a synapse.
- Parameters:
threshold (float) – Below this weight is considered depression, above or equal to this weight is considered potentiation (or the static weight of the connection on static weight connections)
prob_elim_depressed (float) – The probability of elimination if the weight has been depressed (ignored on static weight connections)
prob_elim_potentiated (float) – The probability of elimination of the weight has been potentiated or has not changed (and also used on static weight connections)
- get_parameter_names()[source]
Return the names of the parameters supported by this rule.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes()[source]
Get the amount of SDRAM used by the parameters of this rule.
- Return type:
- property vertex_executable_suffix
The suffix to be appended to the vertex executable for this rule.
- Return type:
- class spynnaker.pyNN.RandomDistribution(distribution, parameters_pos=None, rng=None, **parameters_named)
Bases:
RandomDistribution
Class which defines a next(n) method which returns an array of
n
random numbers from a given distribution.Examples:
>>> rd = RandomDistribution('uniform', (-70, -50)) >>> rd = RandomDistribution('normal', mu=0.5, sigma=0.1) >>> rng = NumpyRNG(seed=8658764) >>> rd = RandomDistribution('gamma', k=2.0, theta=5.0, rng=rng)
Available distributions¶ Name
Parameters
Comments
binomial
n
,p
gamma
k
,theta
exponential
beta
lognormal
mu
,sigma
normal
mu
,sigma
normal_clipped
mu
,sigma
,low
,high
Values outside (
low
,high
) are redrawnnormal_clipped_to_boundary
mu
,sigma
,low
,high
Values below/above
low
/high
are set tolow
/high
poisson
lambda_
Trailing underscore since
lambda
is a Python keyworduniform
low
,high
uniform_int
low
,high
Only generates integer values
vonmises
mu
,kappa
- Parameters:
distribution (str) – the name of a random number distribution.
parameters_pos (tuple or None) – parameters of the distribution, provided as a tuple. For the correct ordering, see random.available_distributions.
rng (NumpyRNG or GSLRNG or NativeRNG or None) – the random number generator to use, if a specific one is desired (e.g., to provide a seed).
parameters_named – parameters of the distribution, provided as keyword arguments.
Parameters may be provided either through
parameters_pos
or throughparameters_named
, but not both. All parameters must be provided, there are no default values. Parameter names are, in general, as used in Wikipedia.
- class spynnaker.pyNN.RandomSelection
Bases:
AbstractPartnerSelection
Partner selection that picks a random source neuron from all sources.
- get_parameter_names()[source]
Return the names of the parameters supported by this rule.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes()[source]
Get the amount of SDRAM used by the parameters of this rule.
- Return type:
- property vertex_executable_suffix
The suffix to be appended to the vertex executable for this rule.
- Return type:
- write_parameters(spec)[source]
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator) –
- class spynnaker.pyNN.RandomStructure(boundary, origin=(0.0, 0.0, 0.0), rng=None)[source]
Bases:
BaseStructure
Represents a structure with neurons distributed randomly within a given volume.
- Arguments:
boundary - a subclass of
Shape
. origin - the coordinates (x,y,z) of the centre of the volume.
- generate_positions(n)[source]
Calculate and return the positions of n neurons positioned according to this structure.
- parameter_names = ('boundary', 'origin', 'rng')
- spynnaker.pyNN.STDPMechanism
alias of
SynapseDynamicsSTDP
- class spynnaker.pyNN.SmallWorldConnector(degree, rewiring, allow_self_connections=True, n_connections=None, rng=None, safe=True, callback=None, verbose=False)
Bases:
AbstractConnector
,AbstractGenerateConnectorOnHost
A connector that uses connection statistics based on the Small World network connectivity model.
Note
This is typically used from a population to itself.
- Parameters:
degree (float) – the region length where nodes will be connected locally
rewiring (float) – the probability of rewiring each edge
allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
n_connections (int or None) – if specified, the number of efferent synaptic connections per neuron
rng (NumpyRNG or None) – Seeded random number generator, or
None
to make one when needed.safe (bool) – If
True
, check that weights and delays have valid values. IfFalse
, this check is skipped.callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- create_synaptic_block(post_slices, post_vertex_slice, synapse_type, synapse_info)[source]
Create a synaptic block from the data.
- Parameters:
post_vertex_slice (Slice) –
synapse_type (AbstractSynapseType) –
synapse_info (SynapseInformation) –
- Returns:
The synaptic matrix data to go to the machine, as a Numpy array
- Return type:
- get_delay_maximum(synapse_info)[source]
Get the maximum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- Return type:
int or None
- get_delay_minimum(synapse_info)[source]
Get the minimum delay specified by the user in ms, or None if unbounded.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
int or None
- get_n_connections_from_pre_vertex_maximum(n_post_atoms, synapse_info, min_delay=None, max_delay=None)[source]
Get the maximum number of connections from any neuron in the pre vertex to the neurons in the post_vertex_slice, for connections with a delay between min_delay and max_delay (inclusive) if both specified (otherwise all connections).
- Parameters:
delays (RandomDistribution or int or float or str) –
n_post_atoms (int) –
synapse_info (SynapseInformation) –
min_delay (int or None) –
max_delay (int or None) –
- Return type:
- get_n_connections_to_post_vertex_maximum(synapse_info)[source]
Get the maximum number of connections to any neuron in the post vertex from neurons in the pre vertex.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- get_weight_maximum(synapse_info)[source]
Get the maximum of the weights for this connection.
- Parameters:
synapse_info (SynapseInformation) –
- Return type:
- set_projection_information(synapse_info)[source]
Sets a connectors projection info.
- Parameters:
synapse_info (SynapseInformation) – the synapse info
- class spynnaker.pyNN.Space(axes=None, scale_factor=1.0, offset=0.0, periodic_boundaries=None)[source]
Bases:
object
Class representing a space within distances can be calculated. The space is Cartesian, may be 1-, 2- or 3-dimensional, and may have periodic boundaries in any of the dimensions.
- Arguments:
- axes:
if not supplied, then the 3D distance is calculated. If supplied, axes should be a string containing the axes to be used, e.g. ‘x’, or ‘yz’. axes=’xyz’ is the same as axes=None.
- scale_factor:
it may be that the pre and post populations use different units for position, e.g. degrees and µm. In this case, scale_factor can be specified, which is applied to the positions in the post-synaptic population.
- offset:
if the origins of the coordinate systems of the pre- and post- synaptic populations are different, offset can be used to adjust for this difference. The offset is applied before any scaling.
- periodic_boundaries:
either None, or a tuple giving the boundaries for each dimension, e.g. ((x_min, x_max), None, (z_min, z_max)).
- AXES = {'x': [0], 'xy': [0, 1], 'xyz': range(0, 3), 'xz': [0, 2], 'y': [1], 'yz': [1, 2], 'z': [2], None: range(0, 3)}
- distance_generator(f, g)[source]
- distances(A, B, expand=False)[source]
Calculate the distance matrix between two sets of coordinates, given the topology of the current space. From http://projects.scipy.org/pipermail/numpy-discussion/2007-April/027203.html
- class spynnaker.pyNN.Sphere(radius)[source]
Bases:
Shape
Represents a spherical volume within which neurons may be distributed.
- sample(n, rng)[source]
Return n points distributed randomly with uniform density within the sphere.
- spynnaker.pyNN.SpiNNakerProjection
alias of
Projection
- spynnaker.pyNN.SpikePairRule
alias of
TimingDependenceSpikePair
- class spynnaker.pyNN.SpikeSourceArray(spike_times=None)
Bases:
AbstractPyNNModel
- create_vertex(n_neurons, label, splitter, n_colour_bits)[source]
Create a vertex for a population of the model.
- Parameters:
n_neurons (int) – The number of neurons in the population
label (str) – The label to give to the vertex
splitter (AbstractSplitterCommon or None) –
n_colour_bits (int) –
- Returns:
An application vertex for the population
- Return type:
- default_population_parameters = {'n_colour_bits': None, 'splitter': None}
- class spynnaker.pyNN.SpikeSourcePoisson(rate=1.0, start=0, duration=None)
Bases:
AbstractPyNNModel
- absolute_max_atoms_per_core = 500
- create_vertex(n_neurons, label, seed, max_rate, splitter, n_colour_bits)[source]
Create a vertex for a population of the model.
- Parameters:
- Returns:
An application vertex for the population
- Return type:
- default_population_parameters = {'max_rate': None, 'n_colour_bits': None, 'seed': None, 'splitter': None}
- spynnaker.pyNN.StaticSynapse
alias of
SynapseDynamicsStatic
- class spynnaker.pyNN.StepCurrentSource(times=None, amplitudes=None)
Bases:
AbstractCurrentSource
Current source where the amplitude changes based on a time array.
- property current_source_id
The ID of the current source.
- Return type:
- property get_parameter_types
The parameter types for the current source.
- set_parameters(**parameters)[source]
Set the current source parameters.
- Parameters:
parameters – the parameters to set
- spynnaker.pyNN.StructuralMechanismSTDP
alias of
SynapseDynamicsStructuralSTDP
- spynnaker.pyNN.StructuralMechanismStatic
alias of
SynapseDynamicsStructuralStatic
- spynnaker.pyNN.connect(pre, post, weight=0.0, delay=None, receptor_type=None, p=1, rng=None)[source]
Builds a projection.
- Parameters:
pre (Population) – source pop
post (Population) – destination pop
weight (float) – weight of the connections
delay (float) – the delay of the connections
receptor_type (str) – excitatory / inhibitory
p (float) – probability
rng (NumpyRNG) – random number generator
- spynnaker.pyNN.create(cellclass, cellparams=None, n=1)[source]
Builds a population with certain parameters.
- Parameters:
cellclass (type or AbstractPyNNModel) – population class
cellparams – population parameters.
n (int) – number of neurons
- Return type:
- spynnaker.pyNN.distance(src_cell, tgt_cell, mask=None, scale_factor=1.0, offset=0.0, periodic_boundaries=None)[source]
Return the Euclidean distance between two cells.
- Parameters:
src_cell – Measure from this cell
tgt_cell – To this cell
mask (ndarray) –
allows only certain dimensions to be considered, e.g.:
to ignore the z-dimension, use
mask=array([0,1])
to ignore y,
mask=array([0,2])
to just consider z-distance,
mask=array([2])
scale_factor (float) – allows for different units in the pre- and post-position (the post-synaptic position is multiplied by this quantity).
offset (float) –
periodic_boundaries –
- spynnaker.pyNN.end(_=True)[source]
Cleans up the SpiNNaker machine and software
- Parameters:
_ – was named compatible_output, which we don’t care about, so is a non-existent parameter
- spynnaker.pyNN.get_current_time()[source]
Gets the time within the simulation.
- Returns:
returns the current time
- spynnaker.pyNN.get_machine()[source]
Get the SpiNNaker machine in use.
- Returns:
the machine object
- Return type:
- spynnaker.pyNN.get_max_delay()[source]
Part of the PyNN API but does not make sense for sPyNNaker as different Projection, Vertex splitter combination could have different delays they can support.
Most likely value is timestep * 144
- Raises:
NotImplementedError – As there is no system wide max_delay
- spynnaker.pyNN.get_min_delay()[source]
The minimum allowed synaptic delay; delays will be clamped to be at least this.
- Returns:
returns the min delay of the simulation
- Return type:
- spynnaker.pyNN.get_time_step()[source]
The integration time step.
- Returns:
get the time step of the simulation (in ms)
- Return type:
- spynnaker.pyNN.initialize(cells, **initial_values)[source]
Sets cells to be initialised to the given values.
- Parameters:
cells (Population or PopulationView) – the cells to change parameters on
initial_values – the parameters and their values to change
- spynnaker.pyNN.list_standard_models()[source]
Return a list of all the StandardCellType classes available for this simulator.
- spynnaker.pyNN.num_processes()[source]
The number of MPI processes.
Note
Always 1 on SpiNNaker, which doesn’t use MPI.
- Returns:
the number of MPI processes
- Return type:
- spynnaker.pyNN.rank()[source]
The MPI rank of the current node.
Note
Always 0 on SpiNNaker, which doesn’t use MPI.
- Returns:
MPI rank
- Return type:
- spynnaker.pyNN.record(variables, source, filename, sampling_interval=None, annotations=None)[source]
Sets variables to be recorded.
- Parameters:
variables (str or list(str)) – may be either a single variable name or a list of variable names. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.
source (Population or PopulationView) – where to record from
filename (str) – file name to write data to
sampling_interval – how often to sample the recording, not ignored so far
annotations (dict(str, ...)) – the annotations to data writers
- Returns:
neo object
- Return type:
- spynnaker.pyNN.reset(annotations=None)[source]
Resets the simulation to t = 0.
- spynnaker.pyNN.run(simtime, callbacks=None)[source]
The run() function advances the simulation for a given number of milliseconds.
- spynnaker.pyNN.run_for(simtime, callbacks=None)
The run() function advances the simulation for a given number of milliseconds.
- spynnaker.pyNN.run_until(tstop)[source]
Run until a (simulation) time period has completed.
- spynnaker.pyNN.set_number_of_neurons_per_core(neuron_type, max_permitted)[source]
Sets a ceiling on the number of neurons of a given model that can be placed on a single core. This can be overridden by the individual Population.
The new value can be None, meaning that the maximum is the same as the number of atoms, an int, meaning all Populations of this model must have one dimension, or a tuple of n integers, meaning all Populations of this model must have n dimensions. If not all Populations of this model have the same number of dimensions, it is recommended to set this to None here and then set the maximum on each Population.
- Parameters:
neuron_type (type(AbstractPopulationVertex)) – neuron type
max_permitted (int) – the number to set to
- spynnaker.pyNN.setup(timestep=0.1, min_delay='auto', max_delay=None, database_socket_addresses=None, time_scale_factor=None, n_chips_required=None, n_boards_required=None, **extra_params)[source]
The main method needed to be called to make the PyNN 0.8 setup. Needs to be called before any other function
- Parameters:
timestep (float or None) – the time step of the simulations in microseconds; if None, the configuration value is used
min_delay (float or str) – the minimum delay of the simulation
max_delay (float or str or None) – Ignored and logs a warning if provided
database_socket_addresses (iterable(SocketAddress)) – the sockets used by external devices for the database notification protocol
time_scale_factor (int or None) – multiplicative factor to the machine time step (does not affect the neuron models accuracy)
n_chips_required (int or None) – Deprecated! Use n_boards_required instead. Must be None if n_boards_required specified.
n_boards_required (int or None) – if you need to be allocated a machine (for spalloc) before building your graph, then fill this in with a general idea of the number of boards you need so that the spalloc system can allocate you a machine big enough for your needs.
extra_params – other keyword arguments used to configure PyNN
- Returns:
MPI rank (always 0 on SpiNNaker)
- Return type:
- Raises:
ConfigurationException – if both
n_chips_required
andn_boards_required
are used.