spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence package¶
Module contents¶
- class spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.AbstractHasAPlusAMinus¶
Bases:
object
An object that has \(A^+\) and \(A^-\) properties.
- class spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.AbstractWeightDependence¶
Bases:
AbstractHasParameterNames
API with the weight dependency methods.
- abstract get_parameters_sdram_usage_in_bytes(n_synapse_types: int, n_weight_terms: int) int [source]¶
Get the amount of SDRAM used by the parameters of this rule.
- abstract is_same_as(weight_dependence: AbstractWeightDependence) bool [source]¶
Determine if this weight dependence is the same as another.
- Parameters:
weight_dependence (AbstractWeightDependence)
- Return type:
- abstract property vertex_executable_suffix: str¶
The suffix to be appended to the vertex executable for this rule.
- Return type:
- abstract property weight_maximum: float¶
The maximum weight that will ever be set in a synapse as a result of this rule.
- Return type:
- abstract write_parameters(spec: DataSpecificationBase, global_weight_scale: float, synapse_weight_scales: ndarray[Any, dtype[floating]], n_weight_terms: int)[source]¶
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator) – The specification to write to
global_weight_scale (float) – The weight scale applied globally
synapse_weight_scales (list(float)) – The total weight scale applied to each synapse including the global weight scale
n_weight_terms (int) – The number of terms used by the synapse rule
- class spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.WeightDependenceAdditive(w_min: float = 0.0, w_max: float = 1.0)¶
Bases:
AbstractHasAPlusAMinus
,AbstractWeightDependence
An additive weight dependence STDP rule.
- get_parameter_names() Iterable[str] [source]¶
Get the parameter names available from the component.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes(n_synapse_types: int, n_weight_terms: int) int [source]¶
Get the amount of SDRAM used by the parameters of this rule.
- is_same_as(weight_dependence: AbstractWeightDependence) bool [source]¶
Determine if this weight dependence is the same as another.
- Parameters:
weight_dependence (AbstractWeightDependence)
- Return type:
- property vertex_executable_suffix: str¶
The suffix to be appended to the vertex executable for this rule.
- Return type:
- property weight_maximum: float¶
The maximum weight that will ever be set in a synapse as a result of this rule.
- Return type:
- write_parameters(spec: DataSpecificationBase, global_weight_scale: float, synapse_weight_scales: ndarray[Any, dtype[floating]], n_weight_terms: int)[source]¶
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator) – The specification to write to
global_weight_scale (float) – The weight scale applied globally
synapse_weight_scales (list(float)) – The total weight scale applied to each synapse including the global weight scale
n_weight_terms (int) – The number of terms used by the synapse rule
- class spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.WeightDependenceAdditiveTriplet(w_min: float = 0.0, w_max: float = 1.0, A3_plus: float = 0.01, A3_minus: float = 0.01)¶
Bases:
AbstractHasAPlusAMinus
,AbstractWeightDependence
An triplet-based additive weight dependence STDP rule.
- Parameters:
- default_parameters = {'A3_minus': 0.01, 'A3_plus': 0.01, 'w_max': 1.0, 'w_min': 0.0}¶
- get_parameter_names() Iterable[str] [source]¶
Get the parameter names available from the component.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes(n_synapse_types: int, n_weight_terms: int) int [source]¶
Get the amount of SDRAM used by the parameters of this rule.
- is_same_as(weight_dependence: AbstractWeightDependence) bool [source]¶
Determine if this weight dependence is the same as another.
- Parameters:
weight_dependence (AbstractWeightDependence)
- Return type:
- property vertex_executable_suffix: str¶
The suffix to be appended to the vertex executable for this rule.
- Return type:
- property weight_maximum: float¶
The maximum weight that will ever be set in a synapse as a result of this rule.
- Return type:
- write_parameters(spec: DataSpecificationBase, global_weight_scale: float, synapse_weight_scales: ndarray[Any, dtype[floating]], n_weight_terms: int)[source]¶
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator) – The specification to write to
global_weight_scale (float) – The weight scale applied globally
synapse_weight_scales (list(float)) – The total weight scale applied to each synapse including the global weight scale
n_weight_terms (int) – The number of terms used by the synapse rule
- class spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.WeightDependenceMultiplicative(w_min: float = 0.0, w_max: float = 1.0)¶
Bases:
AbstractHasAPlusAMinus
,AbstractWeightDependence
A multiplicative weight dependence STDP rule.
- get_parameter_names() Iterable[str] [source]¶
Get the parameter names available from the component.
- Return type:
iterable(str)
- get_parameters_sdram_usage_in_bytes(n_synapse_types: int, n_weight_terms: int) int [source]¶
Get the amount of SDRAM used by the parameters of this rule.
- is_same_as(weight_dependence: AbstractWeightDependence) bool [source]¶
Determine if this weight dependence is the same as another.
- Parameters:
weight_dependence (AbstractWeightDependence)
- Return type:
- property vertex_executable_suffix: str¶
The suffix to be appended to the vertex executable for this rule.
- Return type:
- property weight_maximum: float¶
The maximum weight that will ever be set in a synapse as a result of this rule.
- Return type:
- write_parameters(spec: DataSpecificationBase, global_weight_scale: float, synapse_weight_scales: ndarray[Any, dtype[floating]], n_weight_terms: int)[source]¶
Write the parameters of the rule to the spec.
- Parameters:
spec (DataSpecificationGenerator) – The specification to write to
global_weight_scale (float) – The weight scale applied globally
synapse_weight_scales (list(float)) – The total weight scale applied to each synapse including the global weight scale
n_weight_terms (int) – The number of terms used by the synapse rule